THE SCHOOL DISTRICT OF SOUTH ORANGE-MAPLEWOOD

BOARD OF EDUCATION MEMBERS
Elizabeth Baker, President
Chris Sabin, First Vice-President
Madhu Pai, Second Vice-President
Susie Adamson, Member
Maureen Jones, Member
Stephanie Lawson-Muhammad, Member
Annemarie Maini, Member
Donna Smith, Member
Johanna Wright, Member

ADMINISTRATION
Thomas Ficarra, ED. D, Superintendent
Susan Grierson, Assistant Superintendent for Curriculum & Instruction
Kimberly Beane, Supervisor, K-8 Math and Science
Introduction

The South Orange and Maplewood School District (SOMSD) serves more than 3,200 elementary students across six elementary schools in suburban New Jersey. SOMSD students represent a full range of academic, socio-economic, ethnic, and language backgrounds. More than 150 general and special education teachers work to meet this spectrum of needs in science. The K-5 Science Curriculum establishes district expectations for instructional sequence and pacing, instructional delivery, student outcomes, and assessment.

Philosophy
Science is for all students and often engages students of varied learning preferences. Learning science is more than learning facts and measurements, just as math is more than computation. Science develops curiosity, logical analysis, advocacy, and creating solutions. We learn science because it is a way of understanding, engaging with, and communicating about our world.

Goals
K-5 Science instruction in the South Orange and Maplewood School District aims to open course and career opportunities for all its students by developing students’ interests in science and engineering, research skills, core science concepts, investigative experiences, real world problem solving, evidence-based communication, and the scientific literacy necessary in a modern world.

New Jersey Student Learning Standards and Next Generation Science Standards
This Science Curriculum is aligned in letter, spirit, and intent with the New Jersey Student Learning Standards for Science and the Next Generation Science Standards. It provides all students with relevant and authentic investigative experiences that provide them opportunities and forums to develop and explain their thinking, justify their reasoning with evidence, design solutions to real world problems, make choices and decisions, and expand their scientific literacy and content knowledge over time. This Science Curriculum addresses both science concepts and processes, and at each grade students encounter disciplinary core ideas, cross cutting concepts, and science and engineering practices.

The NJSLS-5 and NGSS both emphasize the science and engineering practices students must use to not just know science content, but to do science as scientists do. Each unit in this curriculum guide highlights science practices that are emphasized in that unit.

NGSS Practice Standards:
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information
Science Curriculum

K-5 Science

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-5 Science Organization</td>
<td>4</td>
</tr>
<tr>
<td>Instructional Minutes</td>
<td>5</td>
</tr>
<tr>
<td>Instructional Elements and Materials</td>
<td>5</td>
</tr>
<tr>
<td>Universal Design for Learning (Differentiation)</td>
<td>6</td>
</tr>
<tr>
<td>Pacing Guide for All Chapters</td>
<td>Addendum 1</td>
</tr>
<tr>
<td>- New Jersey Student Learning Standards and NGSS Alignment</td>
<td></td>
</tr>
<tr>
<td>- Instructional Strategies and Materials</td>
<td></td>
</tr>
<tr>
<td>- Essential Question</td>
<td></td>
</tr>
<tr>
<td>- Cross-curricular Connections</td>
<td></td>
</tr>
<tr>
<td>- Science and Engineering Practice Standards</td>
<td></td>
</tr>
<tr>
<td>- Summative Assessments</td>
<td></td>
</tr>
<tr>
<td>- Sequence and Pacing of Lessons</td>
<td></td>
</tr>
<tr>
<td>K-5 NGSS/New Jersey Student Learning Standards</td>
<td>Addendum 2</td>
</tr>
</tbody>
</table>

Science Curriculum Kindergarten-5th Grade 2017-2018
K-5 Organization

Each grade level K-5 has 3 science units: one Earth Science, one Physical Science, and one Life/Environmental Science. Each grade teaches their Earth Science unit in the Fall, Physical Science in the Winter, and Life/Environmental Science in the Spring. This arrangement allows for cross-grade and whole school investigations and events.

<table>
<thead>
<tr>
<th>Earth Science</th>
<th>Physical Science</th>
<th>Life/Environmental Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
</tr>
<tr>
<td>K</td>
<td>Motion: Push and Pull</td>
<td>Life and The Environment</td>
</tr>
<tr>
<td>1</td>
<td>Invisible Forces: Magnets, Sound</td>
<td>Organisms</td>
</tr>
<tr>
<td>2</td>
<td>Matter and Materials</td>
<td>Living Things</td>
</tr>
<tr>
<td>3</td>
<td>Forces and Motion</td>
<td>Interdependence of Living Things</td>
</tr>
<tr>
<td>4</td>
<td>Energy</td>
<td>Living Things in Their Environment</td>
</tr>
<tr>
<td>5</td>
<td>Changes in Matter</td>
<td>Water and The Environment</td>
</tr>
<tr>
<td>5</td>
<td>Our Earth</td>
<td></td>
</tr>
</tbody>
</table>

Instructional Minutes

All K-5 students in the South Orange and Maplewood School District engage in 60-90 minutes of science each week. The 60-90 minutes do not occur in one long block of time, rather they are broken into shorter elements that include stand alone investigations and integration with literacy, social studies, and mathematics concepts. Teachers schedule the instructional elements at the most effective times for their students and in accordance with the overall building schedule.

Instructional Elements and Materials

Investigations Investigations for all students encompass all hands-on explorations and experiments. The investigations may have been district designed or selected from instructional materials already in place, such as SCIS3, FOSS, Science and Technology for Children, National Geographic, or Insights. We have also purposefully included lessons from AIMS (Activities Integrating Math and Science) because they emphasize the connections among science, math, and engineering.

Literacy The New Jersey Student Learning Standards and Common Core Standards for Literacy include standards specific to content area reading and writing. To integrate literacy with science, the curriculum for all students connects to picture books, trade books, textbooks, articles, and other non-fiction reading formats. Additionally students will write arguments based on evidence, letters, journals, and Simulated Research Tasks.

Mathematics Mathematics is a tool and language for science. The NGSS Science and Engineering Practices include “Analyzing and Interpreting Data” and “Using Mathematics and Computational Thinking”. This curriculum guide purposefully includes math concepts and skills as part of science units. Lessons include measurement of distance, time, mass, volume, and temperature, degrees of angle measurement, mapping, data analysis, and graphical representations of data.

Science Curriculum Kindergarten-5th Grade 2017-2018
Universal Design for Learning (UDL)

Students in the South Orange and Maplewood School District are diverse in background experience, cultural norms, primary language, personal interests, learning readiness, strengths, and levels of engagement. Universal Design for Learning (UDL) provides a framework to identify potential barriers to students and strategies to improve access. The columns in the table below are the Three Principles of UDL: Multiple means of Representation, Expression, and Engagement. In each column are instructional strategies that can be used to make science learning more accessible to all students. Definitions and More Strategies for Universal Design for Learning.

<table>
<thead>
<tr>
<th>Multiple Means of Representation</th>
<th>Multiple Means of Expression</th>
<th>Multiple Means of Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Models</td>
<td>Peer Discussions</td>
<td>Teacher Actions</td>
</tr>
<tr>
<td>Earth-Moon-Sun</td>
<td>Think Aloud</td>
<td>Short, Direct Instruction</td>
</tr>
<tr>
<td>Plant or Animal Parts</td>
<td>Where to Start and Why</td>
<td>Teacher Modeling</td>
</tr>
<tr>
<td>Human Systems</td>
<td>Make a Plan</td>
<td>Think Aloud Modeling</td>
</tr>
<tr>
<td>Magnet Systems</td>
<td>Compare Thinking/Plans</td>
<td>Gradual Release of Control</td>
</tr>
<tr>
<td>Electric Circuits</td>
<td>Definitions or Gist</td>
<td>Multiple Access Point</td>
</tr>
<tr>
<td>Landforms</td>
<td>Written Responses</td>
<td>questions and discussions</td>
</tr>
<tr>
<td>State of Matter</td>
<td>Concept Maps</td>
<td>Chunking</td>
</tr>
<tr>
<td>Powerful Visual Models</td>
<td>Diagram or picture</td>
<td>Goal Setting</td>
</tr>
<tr>
<td>Concept Maps</td>
<td>First I..., then I...</td>
<td>Short Videos or Animations</td>
</tr>
<tr>
<td>Diagrams or Flow Charts</td>
<td>Partner journal</td>
<td></td>
</tr>
<tr>
<td>Blueprints</td>
<td>Sticky Note Thoughts</td>
<td></td>
</tr>
<tr>
<td>Labelled Charts</td>
<td>Content-Evidence-Reasoning</td>
<td></td>
</tr>
<tr>
<td>Visual Directions</td>
<td>Graphic Organizers</td>
<td></td>
</tr>
<tr>
<td>Graphic Organizers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support Strategies</td>
<td>Active</td>
<td>Partner Actions</td>
</tr>
<tr>
<td>Online Interactive Models</td>
<td>Choice Boards</td>
<td>Think Aloud</td>
</tr>
<tr>
<td>Online Simulations</td>
<td>Choose a Method (slideshow,</td>
<td>Metacognitive Discussion</td>
</tr>
<tr>
<td>Animated Pre or Re-teach</td>
<td>ShowMe, Poster, report, etc.)</td>
<td>Think-Pair-Share</td>
</tr>
<tr>
<td>Story Boards</td>
<td>Demonstrate their thinking</td>
<td>Turn and Talk</td>
</tr>
<tr>
<td>Partially Completed Models</td>
<td>Demo with online model</td>
<td>Peer Discussions to</td>
</tr>
<tr>
<td>Visual Word Wall</td>
<td>“Show Me” video</td>
<td>consolidate thinking</td>
</tr>
<tr>
<td>Picture Walk: Workbook/Text</td>
<td>Subset of an Investigation</td>
<td>Clock Partners</td>
</tr>
<tr>
<td>Side by Side Models</td>
<td>(isolate one portion)</td>
<td>Listening Dyads</td>
</tr>
<tr>
<td></td>
<td>Verbal explanations rather</td>
<td></td>
</tr>
<tr>
<td></td>
<td>than written</td>
<td></td>
</tr>
</tbody>
</table>

Resources for Differentiation

CK-12 Flexbooks Adaptable textbooks, can edit, change, add video. Animated Interactives.

Newsele, Scholastic News, Time for Kids Tiered articles on the same topic
SOMSD Kindergarten Science Pacing Guide

Seasons

Essential Question: How do things change during a year?

Curricular Connections
Observation Journals
Read Aloud:
Seasons of Arnold’s Apple Tree
Trees by Delta Education
The Four Seasons by Melvin Berger
A Tree For All Seasons National Geographic

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSLs/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-ESS2-1</td>
<td>*Observe and record day-to-day weather changes (hot, cold, raining, etc.)</td>
<td>3 sessions & Ongoing</td>
<td>Calendar Connections Watching the Weather Dress For The Weather</td>
<td>Weather Wear Packed and Prepared Season Cycles Ring Around The Seasons</td>
</tr>
<tr>
<td>K-ESS3-2</td>
<td>*Observe and describe seasonal changes in weather by selecting an appropriate weather wear picture; *Identify how humans respond use weather forecasts to make plans (clothing, events, travel, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-ESS2-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-ESS2-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-PS3-1</td>
<td>*Recognize that changes in seasons change animal behavior, including humans</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOMSD Kindergarten Science Pacing Guide

Motion: Push and Pull

Essential Question: Why do things move or change movement?

Curricular Connections

Motion: Push and Pull, Fast and Slow by D. Stille

<table>
<thead>
<tr>
<th>NJSL/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| K-PS2-1 | • demonstrate that an object can be pushed or pulled to change its motion
 • classify objects according to their properties of motion (rolling & sliding) | 2-3 sessions | Pushes and Pulls
Face to Face (Attract/Repel)
Painting With Magnets
Push N Pull Antics | The Off Ramp (Friction)
Round & Round (Wheels)
Roller Coaster |
| K-PS2-2 | • Use moving air to push objects (change direction or speed)
 • Record and compare data about force (blowing) and distance an object moved
 • Predict and plan for consequences of movement of one object when it acts upon another | 2 sessions | Changes in Motion
Blow and Go
Huff and Puff
The Domino Theory | Rollers & Sliders (Shape)
Keep Rolling (Shape)
Assessment: Marble Run |
SOMSD Kindergarten Science Pacing Guide

Compare, Classify, Sort Unit (Joint Math-Science Unit)

Essential Question: How can we tell when things are alike or different?

Curricular Connections:
Observation Journals

Concurrent with *Math in Focus* Chapter 3 on Classifying and Sorting

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSL/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGSS Practice #5 Practice #7</td>
<td>Observe and order objects by size, length, or weight</td>
<td>3 session</td>
<td>Order by size, length, or weight (MIF Chapter 3)
Activity 2 & 3 (p.75)
Activity 2 & 3 (p.78)
Activity 1, 2, 3, (p.80-82)</td>
<td></td>
</tr>
<tr>
<td>NGSS Practice #5 Practice #7</td>
<td>Classifying and sorting objects based on attributes</td>
<td>4 session</td>
<td>Classifying and sorting (MIF Chapter 16)
Activity 1 (p.182)
Activity 1, 2, 3, (p.186-189)</td>
<td>Assessment Math in Focus Unit Assessment</td>
</tr>
</tbody>
</table>
SOMSD Kindergarten Science Pacing Guide

Life & The Environment

Essential Question: What do living things need?

Read Aloud:

- *Miss Rumphius* by Barbara Cooney
- *Two Bad Ants* by Chris Van Allsburg
- *National Geographic Ants* by Melissa Stewart
- *Ant Cities* by Arthur Dorros
- *Hey, Little Ant* by Phillip M. Hoose
- *Swimmy* by Leo Lionni

Concurrent with Math in Focus unit on non-standard measurement

NGSS Science & Engineering Practices (bold = essential focus)

1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSLS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-PS3-1</td>
<td>* Estimate the size of the puddles and outline them
* Observe the change in the size of the puddles as they dry</td>
<td>2 sessions</td>
<td>Size of Puddles
SCIS Chapter 46, 57</td>
<td>Puddle Paintings</td>
</tr>
<tr>
<td>K-PS3-2</td>
<td>* Observe seeds germinating, developing and growing
* Describe how the sun is essential for life/plants
* Create ways to protect animals/humans from the harmful effects of the sun</td>
<td>3 sessions + ongoing observe</td>
<td>Life on Land
SCIS Section 1
The Sun</td>
<td>Plants and Sunlight
Plants and Water
Plants and Space</td>
</tr>
<tr>
<td>K-LS1-1</td>
<td>* Set Up and observe the ant farm
* Model/Diagram ants parts and how they help them survive in their habitat
* Model/Diagram what ants need to survive on land</td>
<td>3 sessions + ongoing observe</td>
<td>Ant Farms
Tunnel Builders
Cool-Ants (temperature)</td>
<td>Two Bad Ants extension
Defend-Ants
A Fond Farewell</td>
</tr>
<tr>
<td>K-ESS3-1</td>
<td>* Set Up and observe the aquariums
* Model/diagram fish parts and how they help them survive in the water
* Model/Diagram what fish need to survive in the water</td>
<td>3 sessions + ongoing observe</td>
<td>Life in Water
SCIS Section 6</td>
<td>Find the Family
SCIS Section Assessment</td>
</tr>
</tbody>
</table>

2017-2018 Kindergarten- 4
SOMSD First Grade Science Pacing Guide

Earth Patterns

Essential Question: How does the sun effect things?

Curricular Connections
- Observation Journals
- *The Seasons of Arnold’s Apple Tree* by G. Gibbons
- *The Year at Maple Hill Farm* by Provensen
- *A Tree is Nice* by J. Udry
- *What Makes a Shadow?* by C. Bulla
- *Guess Whose Shadow?* by S. Swinburne
- *Shadows and Reflections* by T. Hoban

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

NJSLS/NGSS

<table>
<thead>
<tr>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 1-ESS1-2 | • observe a tree, its properties, and its changes over a year

 • categorize events by seasons

 • record seasonal changes in the sky and on earth

 • compare shadows and their changes over time/year |
| 5 sessions & ongoing | Trees Change

 Tree Patterns

 A Snap of Time

 Season-O

 How Big is Your Tree?

 Tree Shadows | Trees as Habitats

 The Seasons of Arnold’s Apple Tree

 The Year at Maple Hill Farm

 A Tree is Nice extensions |
| 1-ESS1-1

 1-PS4-2

 1-PS4-3

 1-PS4-4 | • observe changes in shadow size and direction

 • compare materials that have shadows or allow light

 • use light patterns to send messages |
| 2-3 sessions | Light and Shadow

 Mystery Shadows

 (Assessment)

 What Can Light Shine Through

 Mystery Messages | Shadow People

 Look at the Moon

 Seeing the Back of Your Head |
SOMSD First Grade Science Pacing Guide

Invisible Forces (Magnets, Sound)

Essential Question: How do objects interact?

Curricular Connections
- Observation Journals
- Technology: Science Court Explorations: Magnets, Sound
- Magnets: Pulling Together, Pushing Apart by N. Rosinsky
- What Makes a Magnet? by F. Branley
- Musical Instruments (First Discovery Books)
- Secret Code by Dana Rau
- Math Patterns Lessons

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSLs/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-PS4-1</td>
<td>• investigate how sound can travel without being seen</td>
<td>2 sessions</td>
<td>Sound Vibrations</td>
<td>Technology: Science Court Explorations: Magnets</td>
</tr>
<tr>
<td>1-PS4-4</td>
<td>• recognize that sound waves can act at a distance</td>
<td></td>
<td>What Makes Sound</td>
<td>Assessment: Hungry Hounds</td>
</tr>
<tr>
<td>K-2 ETS1</td>
<td>• generate a series of rules about sound</td>
<td></td>
<td>Vibration Stations</td>
<td>Making Magnets</td>
</tr>
<tr>
<td></td>
<td>• design a way to make sound vibrations travel</td>
<td></td>
<td>Sound of Voices</td>
<td>Changing Pitch</td>
</tr>
</tbody>
</table>

2017-2018 1st Grade -2
SOMSD First Grade Science Pacing Guide

Organisms

Essential Question: What helps a living thing survive?

Curricular Connections
- Observation Journals
- Technology: Sammy’s Science House: Acorn Pond
- *One Small Fish* by J. Ryder
- *From Seed to Plant* by G. Gibbons
- *Who Eats What?* by P. Lauber

NGSS Science & Engineering Practices *(bold = essential focus)*
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSLS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lesson</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-LS1-1</td>
<td>Observe the needs of plants and animals in an aquarium</td>
<td>5 sessions & monitor</td>
<td>An Aquarium</td>
<td>Observation journal entries SCIS Organisms Chap. 3-7 Assessment: Finding Features</td>
</tr>
<tr>
<td>1-LS3-1</td>
<td>Model/diagram the parts of a living thing and how they help it survive</td>
<td>5 sessions & monitor</td>
<td>We’ve Got Guppies Attending to Needs Fish and Their Fins Meet the Guppy Family</td>
<td></td>
</tr>
<tr>
<td>K-2-ETS1</td>
<td>Design a vehicle or suit to help humans travel better in water</td>
<td>5 sessions & monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compare traits of adult and young of a fish</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOMSD 2nd grade Science Pacing Guide

Earth’s Land and Water

Essential Question: How does the earth change?

Curricular Connections
- Observation Journals
- **Read aloud:** Magic School Bus at the Waterworks & Video
- **Read aloud:** The Cloud Book by dePaola
- **Read aloud:** Did a Dinosaur Drink This Water? By Wells
- **Read aloud:** Clouds by Rockwell
- **Scholastic Website:** Scholastic Study Jams- Water Cycle

Books in Scholastic Library
- Where Do Puddles Go? By Robinson
- Down Comes the Rain By Branley
- Clouds By Bauer

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-ESS2-2</td>
<td>• Research and model the physical features of the Earth</td>
<td>3-4 sessions</td>
<td>Landforms</td>
<td>Features of the Earth Game</td>
</tr>
<tr>
<td>2-ESS2-3</td>
<td>• Map/locate places on earth where water/ice is found</td>
<td>3-4 sessions</td>
<td>The Earth’s Features</td>
<td>Soil Study</td>
</tr>
<tr>
<td>2-ESS2-3</td>
<td>• Model the stages of the water cycle and how they impact earth</td>
<td></td>
<td></td>
<td>Two Soils</td>
</tr>
<tr>
<td>K-ETS1-3</td>
<td>• Test the impact of sunlight on evaporation</td>
<td></td>
<td></td>
<td>Condensation</td>
</tr>
<tr>
<td>2-ESS1-12</td>
<td>• Describe ways that wind, water, earth movements, and living things change the land</td>
<td>3-5 sessions</td>
<td>Earth Changes</td>
<td>Solar Still</td>
</tr>
<tr>
<td>ESS2-1</td>
<td>• Develop a model or plan to reduce the impact of water or wind on the land</td>
<td></td>
<td>Spot the Change</td>
<td>Just a Spoon Full of Salt (saltwater)</td>
</tr>
<tr>
<td>K-ETS1-1</td>
<td>• Classify everyday uses of earth’s natural resources by their origin (use of metal, use of salt, use of water, use of soil, clay, sand etc.)</td>
<td></td>
<td>Agent Erosion</td>
<td>Assessment: Change of Space</td>
</tr>
<tr>
<td></td>
<td>• Generate and classify ways we conserve natural resources (water, soil, metals, etc.)</td>
<td></td>
<td>Modifying Mountains</td>
<td>Volcanic Views</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conserving Resources</td>
<td>Shakes and Qakes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Earth Has What We Need</td>
<td>All Sorts of Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resource Monitor</td>
<td>Brushing Up on Conservation</td>
</tr>
</tbody>
</table>

2017-2018 2nd Grade - 1
SOMSD 2nd grade Science Pacing Guide

Matter and Materials

Essential Question: Why do we use certain materials for certain jobs?

Curricular Connections
- *The Gadget War* by Betsy Duffy
- *What Are You Figuring Now (B. Bannaker)* by Jeri Ferris
- *The Kids of Einstein* Elementary Series
- *Rosie Revere, Engineer* by Andrea Beaty
- *Ada Twist, Scientist* by Andrea Beaty
- *The Girl Who Thought in Pictures* by Julia Finley Mosca
- *Frank Einstein* series by Jon Scieszka

NGSS Science & Engineering Practices *(bold = essential focus)*
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NISLS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 2-PS1-1 | - Classify objects by their materials
- Describe why certain materials are good for certain products (metal, wood, glass, clay, etc.) | 2 sessions | Materials
Secret Sources
This is the House That I Built | |
| 2-PS1-2 | - Test materials to see if they attract magnets or conduct heat, electricity, or sound | 5 sessions | Conductors and Insulators
Maybe It’s Magnetic
Conductor or Insulator
Good Vibrations | Stick to It
Slinky Sound
Assessment: Heat Moves/Cool Conductors |
| 2-PS1-3 | - Students will take apart everyday object and use their parts to solve a real world problem | 2-3 sessions | MacGyver (WhizKid) Challenge
Given every day objects (from conductor lessons above), students must create an object that helps them in some way. | Materials: batteries, foil, paper clips, tape, popsicle sticks, magnet, pennies, switch, eraser, pencil, click pen, bulb, buzzer/bell, lego, dominoes, math cubes, rubber bands, etc. |
SOMSD 2nd grade Science Pacing Guide

Living Things

Essential Question: How do plants and animals live and grow?

Curricular Connections
- *From Seed to Plant* by Gibbons
- *From Seed to Sunflower*
- *From Egg to Chicken*
- *From Caterpillar to Butterfly*
- *Monarch Butterflies* by Waters
- *Now I Know Butterflies* by Berger
- *A Monarch Butterfly's Life* by Himmelman

NGSS Science & Engineering Practices *(bold = essential focus)*
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJ 2009</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 2-LS4-1 | 2-LS2-2 | • Identify a habitat as the place where an organism lives
• Describe food chains/webs in varied habitats
• Compare plant and animal needs for growth and survival | 4-6 sessions (overlap) | Living Things
SCIS Life Cycles Ch.1-3
What Do Plants Need to Grow?
Seeds Travel | Attending to Needs
Where Can Animals Live
People Need Plants |
| 2-LS2-1 | 3-LS1-1 | • Observe and describe life cycles or plants and animals
• Compare plant and animal growth and development | 8+ sessions/ongoing | Life Cycles
From Seeds to Plants
SCIS Life Cycles Ch.4-8
From Eggs to Animals
SCIS Life Cycles Ch.9-11
Metamorphosis
SCIS Life Cycle Ch.12-16 | Just a Little Sprout
A Time of Their Own (Butterflies)
SCIS Section Assessments |
| K-2-ETS1-1 | | • Compare decomposition in different conditions
• Use knowledge of decomposition to design an earth friendly lunch | 1-2 sessions | Earth Day/Environment
Fallen Leaf
After Lunch | Dirt Baggers |
SOMSD Third Grade Science Pacing Guide

Weather and Climate

Essential Question: How does the weather impact our lives?

Curricular Connections

Ck-12 Grade 3 Science Online Textbook Chap. 2: Earth Science
https://www.ck12.org/book/Ck-12-Third-Grade-Science/
Newspaper weather page, internet weather data, or daily observations
Weather by Seymour Simon
Research Simulation Task/ELA
Data Representation Math

NGSS Science & Engineering Practices *(bold = essential focus)*
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NLSLS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 3-ESS2-1 | • Collect and Display weather data
• Recognize, using observations and collected data, the cause and effect relationship between weather conditions and day to day experiences | 3 sessions | **Weather Data**
Charting Current Conditions
Weather Watchers (data collection)
Graphing Temperatures
Create A Weather Map
https://www.nationalgeographic.org/activity/create-weather-map/ | CK-12 Grade 3 Chapter 2.1 Weather Forecasting
https://www.usatoday.com/weather/
https://weather.com/ |
| 3-ESS2-2 | • Use daily temperatures of a world location to predict the next day’s temperature
• Compare temperatures of varied world locations
• Research locations and develop explanation for differences in weather conditions | 3 sessions | **Climate**
Daily Temperatures Around The World
What Makes Temperatures Different?
Mapping World Climate Zones | CK-12 Grade 3 Chapter 2.2 World Climates
http://www.weatherforkids.org/climate.html
Who’s Home in the Biome |
| 3-ESS3-1 | 3-5-ETS1-2
• Design a method or solution to handle weather changes | 2 sessions | **Preparing for Weather**
Packed and Prepared Hurricane Houses | Assessment: Research Simulation Task-Forecasting |
SOMSD Third Grade Science Pacing Guide

Forces and Motion

Essential Question: How can we use energy to do things?

Curricular Connections
Ck-12 Grade 3 Science Online Textbook Chap. 1: Physical Science
https://www.ck12.org/book/CK-12-Third-Grade-Science/

Research Simulation Task/ELA
Measurement and Data/Mathematics

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSLS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 3-PS2-1 | Change an object's direction or speed by changing the amount or direction of force | 3-5 sessions | **Forces**
Give the Car A Push
Modifying Motion
On The Rebound | **CK-12 Grade 3 Chapter 1.1 Forces**
CK-12 Grade 3 Chapter 1.3 Gravity
Blast Off Balloons (forces)
If It Is Up, It Must Come Down (gravity)
Science Court: Inertia
Science Court: Gravity
Science Court: Rockets |
| 3-PS2-2 | Predict the height a ball bounces based on bounce data from different drop heights
Apply force to overcome gravity | 3-5 sessions |
Face to Face
Holding Power
Magnets Apart | |
| 3-PS2-3 | Predict movement of a magnet when attracted or repelled by another magnet
Measure and compare the strength of 2 magnets separately and combined
Predict the force exerted by a magnet based on data at different distances | 3 sessions | **Magnets as Force**
Face to Face
Holding Power
Magnets Apart | **CK-12 Grade 3 Chapter 1.4 Magnets**
A Sorting Challenge (into/review of magnets)
Magnet Tug of War (compare attract and repel)
Science Court: Magnets |
| 3-PS2-4 | Design a solution to an everyday problem using magnetism to attract or repel | 2 sessions | **Using Magnets**
What Can Magnets Do For You? | Assessment: Research Simulation Task-Magnet Levitated Trains |
| 3-5-ETS1-1 | | | | |

2017-2018 3rd Grade - 2
SOMSD Third Grade Science Pacing Guide

Interdependence of Living Things

Essential Question: How are living things suited to living in their environments?

Curricular Connections

Ck-12 Grade 3 Science Online Textbook Chap. 3: Life Science
https://www.ck12.org/book/CK-12-Third-Grade-Science/

The Great Kapok Tree by Lynn Cherry
A River Ran Wild by Lynn Cherry
Who Really Killed Cock Robin by Jean Craighead George

NGSS Science & Engineering Practices *(bold = essential focus)*
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSLS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 3-LS4-1 | - Classify animals as vertebrate and mammal, reptile, amphibian, fish, bird based on traits common to each group
- Use fossil evidence to describe life in the past | 3-5 sessions | Animal Traits
Animal Antics
It's In the Cards
Can You Dig It/Paleo Play
Background: How Fossils Form
https://www.nationalgeographic.org/activity/sediment-fossil-surprise/ | *CK-12 Grade 3 Chapter 3.5 Animal Characteristics*
Animal Egg-serts
Analyzing Arthropods
Wings and Webs
Frog and Toad are Kin
Are You A Fossil Hunter Literature Tasks |
| 3-LS2-1
3-LS3-1
3-LS3-2
3-LS4-2
3-LS4-3 | - Model and Explain how adaptations help a plant or animal survive in its environment
- Describe how differences within a species can impact survival | 7-10 sessions | Adaption
Bird Beaks and Fowl Feat
Bunches of Bats
Parental Control
Defense by Design
Peas, Please | *CK-12 Grade 3 Chapter 3.1 Adaptation & Natural Selection*
CK-12 Grade 3 Chapter 3.3 Plant Adaptations
Table Manners (insect mouths/food source)
Camouflage
Design Your Own Shelter |
SOMSD Third Grade Science Pacing Guide

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Sessions</th>
<th>Materials</th>
<th>Resources</th>
</tr>
</thead>
</table>
| 3-LS1-1 | • Find similarities in all plant and animal life cycles (birth, growth, reproduction, death) | 1-2 sessions | Life Cycles
This is Your Life, Tadpole
Insect Metamorphosis
Beans Start to Finish | CK-12 Grade 3 Chapter 3.2 Insect Life Cycles
CK-12 Grade 3 Chapter 3.4 Plant Life cycles
A Cricket's Life |
| 3-LS4-4 | • Explain how changes to an environment impact living things | 2 sessions | Environmental Change
The Kapok Tree (lesson) | Assessment: Research Simulation Task
Deforestation
The Great Kapok Tree (book) |
SOMSD Fourth Grade Science Pacing Guide

Earth Processes

Essential Question: How is the land important to our lives?

Curricular Connections
Ck-12 Grade 4 Science Online Textbook Chap. 2: Earth Science
https://www.ck12.org/book/CK-12-Fourth-Grade-Science/

ELA Unit Natural Disasters runs concurrently
Research Simulation Task/ELA
Mapping Skills

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSL/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 4-ESS2-2 | Use maps (physical, topographical) to model and describe earth’s features | 2 sessions | Landforms
Mapping Landforms
https://www.nationalgeographic.org/activity/mapping-landforms/ | CK-12 Grade 4 Chapter 2.1 Earth’s Surface Landform Photo Essays
Major Mountain Mapping
Out Landish Mapping
Google Earth |
| 4-ESS2-1 | Investigate, model, and compare multiple causes and effects of weathering and erosion | 4 sessions | Weathering and Erosion
Weathering Ways
Evidence of Erosion | |
| 4-ESS3-2 | Use maps to model how earthquakes and volcanoes change the land quickly | 3 sessions | Fast Changes to Landforms
Mapping Extreme Natural Events
https://www.nationalgeographic.org/activity/mapping-extreme-natural-events/ | CK-12 Grade 4 Chapter 2.2 Plate Tectonics
Topping Off Mt. St. Helens
Volcanoes
Assessment: Self Selected Research Task aligned with TC ELA Unit |
| 3-5-ETS1-2| Evaluate how humans prepare for and handle sudden changes (earthquake, volcano) to the earth | | |

2017-2018 4th Grade - 1
| 4-ESS1-1 | • Investigate layers of rock to find evidence of life during different times | 2 sessions | Rock Layers
Relative Rock Layers Interactive
Layers of Time Interactive
https://www.amnh.org/ology/features/layersoftime/game.php
How Fossils Form Game
http://www.sheppardsoftware.com/scienceforkids/dinosaurs/fossils.htm | CK-12 Grade 4 Chapter 2.3 Relative Age of Rocks
CK-12 Grade 4 Chapter 2.4 Fossils
Sterling Hill Mining Museum Fossil Discovery Center |
| 4-ESS1-1 4-ESS3-1 | • Classify natural resources as renewable or non-renewable
• Link everyday items to the natural resources necessary to create them | 3 sessions | Natural Resources
Recognizing Resources
Classifying Resources
Resource Relatives | CK-12 Grade 4 Chapter 1.5 Energy Resources
Assessment: Debate Non-Renewable Energy Resources
https://www.nationalgeographic.org/activity/non-renewable-energy-resources/ |
SOMSD Fourth Grade Science Pacing Guide

Energy

Essential Question: How does energy change from one kind to another?

Curricular Connections:
- *Ck-12 Grade 4 Science Online Textbook Chap. 1: Physical Science*
 https://www.ck12.org/book/CK-12-Fourth-Grade-Science/
- Research Simulation Task/ELA
- Measurement and Data/Mathematics

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out Investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSL/N</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 4-PS3-1 | Design, refine, and carry out tests to measure the impact of variables (ball size-bounce height, drop height-bounce height, ramp height-bounce back distance) | Potential and Kinetic Energy | CK-12 Grade 4 Chapter 1.1 Types of Energy
| | | Have A Ball | CK-12 Grade 4 Chapter 1.3 Forms and Changes
| | | Drop Height, Bounce Height | CK-12 Grade 4 Chapter 1.12 Speed
| | | Ball on a Roll (speed/reaction) | |
| 4-PS3-2 | Use temperature as evidence of transfer of heat energy through air or objects | 3 sessions | Heat Energy | CK-12 Grade 4 Chapter 1.4 Thermal Energy
| | | Heat Energy and Temperature | |
| | | Heat Energy: Conduction | |
| 4-PS3-2 | Model how sound vibrations travel through air or objects | 2 sessions | Sound Energy | CK-12 Grade 4 Chapter 1.2 Sound Energy
| | | Sound is Vibration | Slinky Sound
| | | Traveling Sound | |
| 4-PS3-2 | Model how light energy reacts to different objects | 2 sessions | Light Energy | CK-12 Grade 4 Chapter 1.7-1.8 Light Energy
| | | Light Passing Through | Light Rays Slow Down (refraction)
| | | Light Reflections | Prism Power
| 4-PS3-2 | Use electric energy converted into sound or light energy to communicate a message based on a pattern or code | 2 sessions | Electricity | CK-12 Grade 4 Chapter 1.10-1.11 Electricity
| | | Messages in Space | |
| 4-PS3-4 | Plan, design, refine, and execute a device that converts one form of energy into another to solve a problem | 4 sessions | **Energy Conversion**
MacGyver Challenge | **Assessment: Research Simulation Task-Argument for Increasing Alternate Energy Sources** |
| --- | --- | --- | --- | --- |
| • Demonstrate how wind and water can collect and convert energy
• Based on geographic features, pick successful locations for wind farms | 2 sessions | **Alternative Energy Sources**
Windmills
Water Works | **CK-12 Grade 4 Chapter 1.6 Wind and Water Energy**
Windmill Geography
How to Hydro |
SOMSD Fourth Grade Science Pacing Guide

Living Things and Their Environment

Essential Question: How do living things depend on their environment?

Curricular Connections
Ck-12 Grade 3 Science Online Textbook Chap. 3: Life Science
https://www.ck12.org/book/CK-12-Third-Grade-Science/

The Great Kapok Tree by Lynn Cherry
A River Ran Wild by Lynn Cherry
Who Really Killed Cock Robin by Jean Craighead George

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 3-LS1-2 | • Model sensory organs (eye, ear, nose, skin, mouth) and how they receive information

 • Construct an argument that each body system and its parts contribute to the well being of a human | 4 sessions | **Human Structure**
Sensing Information Stations (Sensitive skin, Here’s to your Ear, The Nose Knows, Eye See)
Body System Stations (circulatory, respiratory, nervous, muscular, skeletal) | **CK-12 Grade 3 Chapter 3.5 Animal Characteristics**
Animal Egg-sperts
Analyzing Arthropods
Wings and Webs
Frog and Toad are Kin
Are You A Fossil Hunter Literature Tasks |
| 4-LS1-2 | • Construct an argument that the structure/parts of animal help it grow and survive in its habitat | 7-10 sessions | **Animals Structure**
Webbed Feet, Bear Feet
Breathing Behaviors
Table Manners (insect mouths)
Owl Vision | **CK-12 Grade 3 Chapter 3.1 Adaptation & Natural Selection**
CK-12 Grade 3 Chapter 3.3 Plant Adaptations
Table Manners (insect mouths/food source)
Camouflage
Design Your Own Shelter |
| 4-LS1-2 | • Construct an argument that the structure/parts of a plant help it grow and survive in its habitat | 1-2 sessions | **Plant Structure**
A Flower Study
Plants Are Producers | **CK-12 Grade 3 Chapter 3.2 Insect Life Cycles**
CK-12 Grade 3 Chapter 3.4 Plant Life cycles
A Cricket’s Life |
<table>
<thead>
<tr>
<th>Task: Research Simulation Track: Habitat Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.LS4-4</td>
</tr>
<tr>
<td>- Relate cause and effect of changes to an ecosystem</td>
</tr>
<tr>
<td>- Sea Food</td>
</tr>
</tbody>
</table>
SOMSD Fifth Grade Science Pacing Guide

Our Earth

Essential Question: How do the Earth, Moon, and Sun change what we experience on Earth?

Curricular Connections

CK-12 Grade 5 Science Online Textbook Chap. 2: Earth Science
https://www.ck12.org/book/CK-12-Fifth-Grade-Science/

Measurement, Time, Angles/Degrees, Circumference, Diameter/Math

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NYSLS/ NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 5-ESS1-1 | - Model the relative size and distance of the sun and other stars to earth
- Explain that the sun appears larger than other stars because it is closer to Earth | 3 sessions | The Sun
- How Far is the Sun?
- Solar Size
- Star Near, Star Far | *CK-12 Grade 5 Chapter 2.11 Stars (and Sun)*
CK-12 Grade 5 Chapter 2.8 The Sun-Earth-Moon System |
| 5-ESS1-2 | - Model the relative size and distance of the Earth, Moon, Sun system
- Model the positions of the EMS system as the moon orbits the earth and as the earth/moon orbit the sun
- Use tide measurement data to describe the effect of gravity on earth | 6-7 sessions | *Month and Seasonal Position*
- Observing Orbits (positions)
- Stringing Out the Spaces (relative distance)
- Moon Phases
- Tide Timers
- Daylight Data (daylight changes during a year)
- Seasonal Do Si Do (seasons) | *CK-12 Grade 5 Chapter 2.9 Earth’s Motion in Space*
Moon Monitoring
Tide Height
Assessment: Science Court: Seasons |
| 5-PS2-1 | - Connect shadow changes during the day to the position of the earth in the sky
- Use sunrise/sunset times to measure/compare day and night | 3 sessions | *Day and Night*
- Me And My Shadow (Shadow Changes)
- Make A Sundial
- Day and Night (measurement) | *CK-12 Grade 5 Chapter 2.9 Earth’s Motion in Space*
CK-12 Grade 5 Chapter 2.10 Gravity
Size Surprises
Sunny Side Up (Shadow stick) |
SOMSD Fifth Grade Science Pacing Guide

Matter

Essential Question: How do we distinguish and describe substances?

Curricular Connections

Ck-12 Grade 5 Science Online Textbook Chap. 1: Physical Science
https://www.ck12.org/book/CK-12-Fifth-Grade-Science/

Measurement of Mass, Volume, Temperature Math

NGSS Science & Engineering Practices (bold = essential focus)
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSLS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-PS1-1</td>
<td>Use mass and volume to identify and describe matter</td>
<td>2 sessions</td>
<td>Describing Matter</td>
<td>1.3 Matter, Mass, and Volume</td>
</tr>
<tr>
<td>5-PS1-3</td>
<td>Classify solids, liquids, and gases as types of matter (has mass, takes up space)</td>
<td></td>
<td>What is the Matter? Stuff and Space</td>
<td></td>
</tr>
<tr>
<td>5-PS1-2</td>
<td>Classify matter changes as physical or chemical</td>
<td>5 sessions</td>
<td>Properties of Matter</td>
<td>1.5 Physical Properties</td>
</tr>
<tr>
<td>5-PS1-4</td>
<td>Demonstrate and explain with evidence that in a chemical reaction, matter is neither created nor destroyed (conservation of mass)</td>
<td></td>
<td>The Goods on Water (properties)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determine and perform tests to identify mystery substances by their properties</td>
<td></td>
<td>Change Matters</td>
<td></td>
</tr>
<tr>
<td>3-5-ETS1-3</td>
<td>Determine the limit of each solvent with each solute (until the solvent is saturated)</td>
<td>4 sessions</td>
<td>Mixtures</td>
<td>1.8 Rate of Dissolving</td>
</tr>
<tr>
<td></td>
<td>Test/refine formulas for a product and recommend one based on experimental data</td>
<td></td>
<td>Involving Dissolving</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Involving Product Testing</td>
<td></td>
<td>Product Testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment: Mystery Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CK-12 Grade 5 Chapter 1.4 Solids, Liquids, and Gases
SOMSD Fifth Grade Science Pacing Guide

Water and The Environment

Essential Question: How do living things depend on water?

Curricular Connections
* Ck-12 Grade 5 Science Online Textbook Chap. 3: Life Science
 * https://www.ck12.org/book/CK-12-Fifth-Grade-Science/

NGSS Science & Engineering Practices *(bold = essential focus)*
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

<table>
<thead>
<tr>
<th>NJSLS/NGSS</th>
<th>Objective</th>
<th>Pacing</th>
<th>Foundational Lessons</th>
<th>Supplemental Lessons</th>
</tr>
</thead>
</table>
| 5-ESS2-2 | • Use ratios to measure and describe the amount of water and land on earth | 2 sessions | **Water on Earth**
Surf and Sand Toss | **Ck-12 Lesson 2.1 Water on Earth**
Were You Aware (salt water, frozen, fresh) |
| 5-ESS3-1 | • Separate a mixture into separate substances as a method to clean water
• Analyze solutions for water sharing system (considering cost, transportation, quantity, etc.) | 4 sessions | **Protecting Earth’s Water**
That Settles It
Water Island
SOMA River Day | **CK-12 Lesson 2.2 Humans and the Water Supply**
CK-12 Lesson 2.3 Protecting the Water Supply |
| 5-ESS3-1 3-5 –ETS1-2 | • Design/Test a filtration system to clean dirty water | 2 sessions | **Animals Need Water**
Help Save The Birds | **Ck-12 Lesson 2.4 Use and Conservation of Resources** |
| 5-LS1-1 | • Develop a usea model for how water can be tested for contaminants | 3 sessions | **Plants Need Water**
Red or Blue Will Tell You Little Sprouts | **Ck-12 Lesson 3.1 Importance of Plants** |
| 5-PS3-1 | • Trace the flow of energy through the links in a food chain | 2 sessions | **Impact of Water Pollution**
Catch Me If You Can
Food Chain/Food Web | **CK-12 Lesson 3.2 Flow of Energy in an Ecosystem**
Assessment: Claim-Evidence-Reasoning Writing Task: How Could Water Pollution Impact food chains and webs |
Kindergarten

The performance expectations in kindergarten help students formulate answers to questions such as: "What happens if you push or pull an object harder? Where do animals live and why do they live there? What is the weather like today and how is it different from yesterday?" Kindergarten performance expectations include PS2, PS3, LS1, ESS2, ESS3, and ETS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop understanding of patterns and variations in local weather and the purpose of weather forecasting to prepare for, and respond to, severe weather. Students are able to apply an understanding of the effects of different strengths or different directions of pushes and pulls on the motion of an object to analyze a design solution. Students are also expected to develop understanding of what plants and animals (including humans) need to survive and the relationship between their needs and where they live. The crosscutting concepts of patterns; cause and effect; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the kindergarten performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
K-PS2: Motion and Stability: Forces and Interactions

Students who demonstrate understanding can:

K-PS2-1. Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. [Clarification Statement: Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, and two objects colliding and pushing on each other.] [Assessment Boundary: Assessment is limited to different relative strengths or different directions, but not both at the same time. Assessment does not include non-contact pushes or pulls such as those produced by magnets.]

K-PS2-2. Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* [Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]

The performance expectations above were developed using the following elements from the Next Generation Science Standards: A Framework for K–12 Science Education.
K-PS3 Energy

Students who demonstrate understanding can:

K-PS3-1. Make observations to determine the effect of sunlight on Earth's surface. [Clarification Statement: Examples of Earth's surface could include sand, soil, rocks, and water] [Assessment Boundary: Assessment of temperature is limited to relative measures such as warmer/cooler.]

K-PS3-2. Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.* [Clarification Statement: Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
<td>• Sunlight warms Earth's surface. (K-PS3-1)</td>
<td>• Events have causes that generate observable patterns. (K-PS3-1)</td>
</tr>
<tr>
<td>Make observations (firsthand or from media) to collect data that can be used to make comparisons. (K-PS3-1)</td>
<td></td>
<td>(K-PS3-2)</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in K-2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.</td>
<td>Cause and Effect</td>
<td></td>
</tr>
<tr>
<td>Use tools and materials provided to design and build a device that solves a specific problem or a solution to a specific problem. (K-PS3-2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods

• Scientists use different ways to study the world. (K-PS3-1)

Connections to other DCIs in Kindergarten: K.ETS1.A (K-PS3-2); K.ETS1.B (K-PS3-2)

Articulation of DCIs across grade-levels: 1.PS4.B (K-PS3-1), (K-PS3-2); 2.ETS1.B (K-PS3-2), 3.ETS2.D (K-PS3-1); 4.ETS1.A (K-PS3-2)

Common Core State Standards Connections:

ELA/Literacy – W.K.7

Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-PS3-1), (K-PS3-2)

Mathematics – K.MD.A.2

Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. (K-PS3-1), (K-PS3-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013

©2013 Achieve, Inc. All rights reserved.
K-LS1 From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

K-LS1-1. Use observations to describe patterns of what plants and animals (including humans) need to survive.

- Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-LS1-1)

Science and Engineering Practices

- **Analyzing and Interpreting Data:** Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations. Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-LS1-1)

Disciplinary Core Ideas

- **LS1.C: Organization for Matter and Energy Flow in Organisms:** All animals need food in order to live and grow. They obtain their food from plants or from other animals. Plants need water and light to live and grow. (K-LS1-1)

Crosscutting Concepts

- **Patterns:** Patterns in the natural and human designed world can be observed and used as evidence. (K-LS1-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013

©2013 Achieve, Inc. All rights reserved.
K-ESS2 Earth’s Systems

Students who demonstrate understanding can:

K-ESS2-1. Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of qualitative observations limited to whole numbers and relative measures such as warmer/cooler.]

K-ESS2-2. Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. [Clarification Statement: Examples of plants and animals changing their environment could include a squirrel digs in the ground to hide its food and tree roots can break concrete.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education.*

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ESS2.B: Weather and Climate</td>
<td>Patterns</td>
</tr>
<tr>
<td>Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
<td>• Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time. (K-ESS2-1)</td>
<td>• Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (K-ESS2-1)</td>
</tr>
<tr>
<td>• Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-ESS2-1)</td>
<td>ESS2.C: Biogeography</td>
<td>Systems and System Models</td>
</tr>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>• Plants and animals can change their environment. (K-ESS2-2)</td>
<td>• Systems in the natural and designed world have parts that work together. (K-ESS2-2)</td>
</tr>
<tr>
<td>Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).</td>
<td>ESS3.C: Human Impacts on Earth Systems</td>
<td></td>
</tr>
<tr>
<td>• Construct an argument with evidence to support a claim. (K-ESS2-2)</td>
<td>• Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. (secondary to K-ESS2-2)</td>
<td></td>
</tr>
</tbody>
</table>

Connections to Nature of Science

Science Knowledge is Based on Empirical Evidence

- Scientists look for patterns and order when making observations about the world. (K-ESS2-1)

Articulation of DCIs across grade levels:

- 2.ESS2.A (K-ESS2-1); 3.ESS2.B (K-ESS2-1); 4.ESS2.A (K-ESS2-1); 4.ESS2.B (K-ESS2-1); 5.ESS2.A (K-ESS2-2)

Common Core State Standards Connections:

- **ELA/Literacy –**
 - RI.K.1 With prompting and support, ask and answer questions about key details in a text. (K-ESS2-2)
 - W.K.1 Use a combination of drawing, dictating, and writing to compose opinion pieces in which they tell a reader the topic or the name of the book they are writing about and state an opinion or preference about the topic or book. (K-ESS2-2)
 - W.K.2 Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic. (K-ESS2-2)
 - W.K.7 Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-ESS2-1)

- **Mathematics –**
 - MP.2 Reason abstractly and quantitatively. (K-ESS2-1)
 - MP.4 Model with mathematics. (K-ESS2-2)
 - **K.CC.A Know number names and the count sequence.** (K-ESS2-1)
 - **K.HD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.** (K-ESS2-1)
 - **K.HD.A.3 Classify objects into given categories; count the number of objects in each category and sort the categories by count.** (K-ESS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

November 2013

©2013 Achieve, Inc. All rights reserved.
K-ESS3 Earth and Human Activity

Students who demonstrate understanding can:

K-ESS3-1. Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live. [Clarification Statement: Examples of relationships could include that deer eat buds and leaves, therefore, they usually live in forested areas; and, grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system.]

K-ESS3-2. Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.* [Clarification Statement: Emphasis is on local forms of severe weather.]

K-ESS3-3. Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* [Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices
- Asking Questions and Defining Problems
 - Asking questions and defining problems in grades K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested.
 - Ask questions based on observations to find more information about the designed world. (K-ESS3-2)
- Developing and Using Models
 - Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diagram, dramatization, storyboard) that represent concrete events or design solutions.
 - Use a model to represent relationships in the natural world. (K-ESS3-1)
- Obtaining, Evaluating, and Communicating Information
 - Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.
 - Read grade-appropriate texts and/or use media to obtain scientific information to describe patterns in the natural world. (K-ESS3-2)
 - Communicate solutions with others in oral and/or written forms using models and/or drawings that provide detail about scientific ideas. (K-ESS3-3)

Disciplinary Core Ideas

ESS3.A: Natural Resources
- Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do. (K-ESS3-1)

ESS3.B: Natural Hazards
- Some kinds of severe weather are more likely than others in a given region. Weather scientists forecast severe weather so that the communities can prepare for and respond to these events. (K-ESS3-2)

ESS3.C: Human Impacts on Earth Systems
- Things that people do to live comfortably can affect the world around them. But people can make choices that reduce their impacts on the land, water, air, and other living things. (K-ESS3-3)

ETS1.A: Defining and Limiting an Engineering Problem
- Asking questions, making observations, and gathering information are helpful in thinking about problems. (Secondary to K-ESS3-2)

ETS1.B: Developing Possible Solutions
- Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (Secondary to K-ESS3-3)

Crosscutting Concepts

Cause and Effect
- Events have causes that generate observable patterns. (K-ESS3-2, K-ESS3-3)

Systems and System Models
- Systems in the natural and designed world have parts that work together. (K-ESS3-1)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
- People encounter questions about the natural world every day. (K-ESS3-2)

Influence of Engineering, Technology, and Science on Society and the Natural World
- People depend on various technologies in their lives; human life would be very different without technology. (K-ESS3-2)

Connections to other DCIs in kindergarten:

K.ETS1.A (K-ESS3-2), (K-ESS3-3)

Common Core State Standards Connections:

ELA/Literacy –

K.RL.1
With prompting and support, ask and answer questions about key details in a text. (K-ESS3-2)

K.W.2
Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic. (K-ESS3-3)

SL.K.3
Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (K-ESS3-2)

SL.K.3
Add drawings or other visual displays to descriptions as desired to provide additional detail. (K-ESS3-1)

Mathematics –

K.MP.2
Reason abstractly and quantitatively. (K-ESS3-1)

K.MP.4
Model with mathematics. (K-ESS3-1, K-ESS3-2)

K.CC
Counting and Cardinality (K-ESS3-1, K-ESS3-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practico or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved.
First Grade

The performance expectations in first grade help students formulate answers to questions such as: "What happens when materials vibrate? What happens when there is no light? What are some ways plants and animals meet their needs so that they can survive and grow? How are parents and their children similar and different? What objects are in the sky and how do they seem to move?" First grade performance expectations include PS4, LS1, LS3, and ESS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop understanding of the relationship between sound and vibrating materials as well as between the availability of light and ability to see objects. The idea that light travels from place to place can be understood by students at this level through determining the effect of placing objects made with different materials in the path of a beam of light. Students are also expected to develop understanding of how plants and animals use their external parts to help them survive, grow, and meet their needs as well as how behaviors of parents and offspring help the offspring survive. The understanding is developed that young plants and animals are like, but not exactly the same as, their parents. Students are able to observe, describe, and predict some patterns of the movement of objects in the sky. The crosscutting concepts of patterns; cause and effect; structure and function; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the first grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
1-PS4 Waves and their Applications in Technologies for Information Transfer

Students who demonstrate understanding can:

1-PS4.1. Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. [Clarification Statement: Examples of vibrating materials that make sound could include tuning forks and plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.]

1-PS4.2. Make observations to construct an evidence-based account that objects can be seen only when illuminated. [Clarification Statement: Examples of observations could include those made in a completely dark room, a pinhole box, and a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light.]

1-PS4.3. Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light. [Clarification Statement: Examples of materials could include those that are transparent (such as clear plastic), translucent (such as wax paper), opaque (such as cardboard), and reflective (such as a mirror).] [Assessment Boundary: Assessment does not include the speed of light.]

1-PS4.4. Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.* [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string "telephones," and a pattern of drum beats.] [Assessment Boundary: Assessment does not include technological details for how communication devices work.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices
Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
- Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question. (1-PS4-1), (1-PS4-3)
Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in K-2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (1-PS4-2)
- Use tools and materials provided to design a device that solves a specific problem. (1-PS4-4)

Connecting to Nature of Science
Scientific Investigations Use a Variety of Methods
- Science investigations begin with a question. (1-PS4-1)
- Scientists use different ways to study the world. (1-PS4-1)

Disciplinary Core Ideas
PS4.A: Wave Properties
- Sound can make matter vibrate, and vibrating matter can make sound. (1-PS4-1)

PS4.B: Electromagnetic Radiation
- Objects can be seen if light is available to illuminate them or if they give off their own light. (1-PS4-2)
- Some materials allow light to pass through them, others allow only some light through and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach. Mirrors can be used to redirect a light beam. (Boundary: The idea that light travels from place to place is developed through experiences with light sources, mirrors, and shadows, but no attempt is made to discuss the speed of light.) (1-PS4-3)

PS4.C: Information Technologies and Instrumentation
- People also use a variety of devices to communicate (send and receive information) over long distances. (1-PS4-4)

Connections to other DCIs in first grade: N/A

Articulation of DCIs across grade-levels: K.ETS1.A (1-PS4-4); 2.ETS1.A (1-PS4-3); 2.ETS1.B (1-PS4-4); 4.PS4.C (1-PS4-4); 4.PS4.B (1-PS4-3); 4.ETS1.A (1-PS4-4)

Common Core State Standards Connections:
ELA/Literacy –
W.1.2 Write informative/explanatory texts in which they name a topic, supply some facts about the topic, and provide some sense of closure. (1-PS4-2)
W.1.7 Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-PS4-1), (1-PS4-2), (1-PS4-3), (1-PS4-4)
W.1.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-PS4-1), (1-PS4-2), (1-PS4-3)
SL.1.1 Participate in collaborative conversations with diverse partners about grade 1 topics and texts with peers and adults in small and larger groups. (1-PS4-1), (1-PS4-2), (1-PS4-3)

Mathematics –
MP.5 Use appropriate tools strategically. (1-PS4-4)
1.MD.A.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-PS4-4)
1.MD.A.2 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. (1-PS4-4)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013
©2013 Achieve, Inc. All rights reserved.
1-LS1 From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

1-LS1-1. Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.*

[Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal antlers; and, detecting intruders by mimicking eyes and ears.]

1-LS1-2. Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.

[Clarification Statement: Examples of patterns of behaviors could include the signals that offspring make (such as crying, chattering, and other vocalizations) and the responses of the parents (such as feeding, comforting, and protecting the offspring).]

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences. November 2013 ©2013 Achieve, Inc. All rights reserved.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>LS1.A: Structure and Function</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in K-2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.</td>
<td>All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water, and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (1-LS1-1)</td>
</tr>
<tr>
<td>Use materials to design a device that solves a specific problem or a solution to a specific problem. (1-LS1-1)</td>
<td>LS1.B: Growth and Development of Organisms</td>
</tr>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td>Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive. (1-LS1-2)</td>
</tr>
<tr>
<td>Obtaining, evaluating, and communicating information in K-2 builds on prior experiences and uses observations and texts to communicate new information.</td>
<td>LS1.D: Information Processing</td>
</tr>
<tr>
<td>Read grade-appropriate texts and use media to obtain scientific information to determine patterns in the natural world. (1-LS1-2)</td>
<td>Animals have body parts that capture and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs. (1-LS1-1)</td>
</tr>
</tbody>
</table>

Crosscutting Concepts

Patterns
- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-LS1-2)

Structure and Function
- The shape and stability of structures of natural and designed objects are related to their function(s). (1-LS1-1)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World
- Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (1-LS1-1)
1-LS3 Heredity: Inheritance and Variation of Traits

Students who demonstrate understanding can:

1-LS3-1. **Make observations to construct** an evidence-based account that young plants and animals are like, but not exactly like, their parents.

Clariﬁcation Statement: Examples of patterns could include features plants or animals share. Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size; and, a particular breed of dog looks like its parents but is not exactly the same.

Assessment Boundary: Assessment does not include inheritance or animals that undergo metamorphosis or hybrids.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>LS3.A: Inheritance of Traits</td>
<td>Patterns</td>
</tr>
</tbody>
</table>
| Constructing explanations and designing solutions in K-2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

* Make observations (freshly or from media) to construct an evidence-based account for natural phenomena. (1-LS3-1) | * Young animals are very much, but not exactly like, their parents. Plants also are very much, but not exactly, like their parents. (1-LS3-1) | * Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-LS3-1) |

Connections to other DCIs in first grade: N/A

Articulation of DCIs across grade levels: 3.LS3.A (1-LS3-1); 3.LS3.B (1-LS3-1)

Common Core State Standards Connections:

ELA/Literacy

RI.1.1 Ask and answer questions about key details in a text. (1-LS3-1)

W.1.7 Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-LS3-1)

Mathematics

MP.2 Reason abstractly and quantitatively. (1-LS3-1)

MP.5 Use appropriate tools strategically. (1-LS3-1)

1.MD.A.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-LS3-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas*. Integrated and reprinted with permission from the National Academy of Sciences.
1-ESS1 Earth's Place in the Universe

Students who demonstrate understanding can:

1-ESS1.1. Use observations of the sun, moon, and stars to describe patterns that can be predicted. [Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.] [Assessment Boundary: Assessment of star patterns is limited to stars being seen at night and not during the day.]

1-ESS1.2. Make observations at different times of year to relate the amount of daylight to the time of year. [Clarification Statement: Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.] [Assessment Boundary: Assessment is limited to relative amounts of daylight, not quantifying the hours or time of daylight.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
- Make observations (firsthand or from media) to collect data that can be used to make comparisons. (1-ESS1-2)

Analyzing and Interpreting Data
Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
- Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (1-ESS1-1)

Disciplinary Core Ideas

ESS1.A: The Universe and its Stars
- Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (1-ESS1-1)

ESS1.B: Earth and the Solar System
- Seasonal patterns of sunrise and sunset can be observed, described, and predicted. (1-ESS1-2)

Crosscutting Concepts

Patterns
- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-ESS1-1), (1-ESS1-2)

Connections to Nature of Science
Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes natural events happen today as they happened in the past. (1-ESS1-1)
- Many events are repeated. (1-ESS1-1)

Articulation of DCIs across grade-levels:
- 3.PS2.A (1-ESS1-1); 5.PS2.B (1-ESS1-1), (1-ESS1-2); 5-ESS1.B (1-ESS1-1), (1-ESS1-2)

Common Core State Standards Connections:
- **ELA/Literacy - W.1.7**
 - Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-ESS1-1), (1-ESS1-2)

- **Mathematics - MP.2**
 - Reason abstractly and quantitatively. (1-ESS1-1)

- **MP.4**
 - Model with mathematics. (1-ESS1-2)

- **MP.5**
 - Use appropriate tools strategically. (1-ESS1-2)

- **1.OA.A.1**
 - Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations to represent the problem. (1-ESS1-2)

- **1.MD.C.4**
 - Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. (1-ESS1-2)

*The performance expectations marked with an asterisk integrates traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2015 Achieve, Inc. All rights reserved.
Second Grade

The performance expectations in second grade help students formulate answers to questions such as: "How does land change and what are some things that cause it to change? What are the different kinds of land and bodies of water? How are materials similar and different from one another, and how do the properties of the materials relate to their use? What do plants need to grow? How many types of living things live in a place?" Second grade performance expectations include PS1, LS2, LS4, ESS1, ESS2, and ETS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop an understanding of what plants need to grow and how plants depend on animals for seed dispersal and pollination. Students are also expected to compare the diversity of life in different habitats. An understanding of observable properties of materials is developed by students at this level through analysis and classification of different materials. Students are able to apply their understanding of the idea that wind and water can change the shape of the land to compare design solutions to slow or prevent such change. Students are able to use information and models to identify and represent the shapes and kinds of land and bodies of water in an area and where water is found on Earth. The crosscutting concepts of patterns; cause and effect; energy and matter; structure and function; stability and change; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the second grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
2-PS1 Matter and its Interactions

Students who demonstrate understanding can:

2-PS1.1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]

2-PS1.2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* [Clarification Statement: Examples of properties could include strength, flexibility, hardness, texture, and absorbency. [Assessment Boundary: Assessment of quantitative measurements is limited to length.]

2-PS1.3. Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. [Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects.]

2-PS1.4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. [Clarification Statement: Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Planning and Carrying Out Investigations

- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question.

Analyzing and Interpreting Data

- Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.

Constructing Explanations and Designing Solutions

- Construct an argument with evidence to support a claim.

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter
- Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)
- Different properties are suited to different purposes. (2-PS1-2)
- A variety of objects can be built up from a small set of pieces. (2-PS1-3)

PS1.B: Chemical Reactions
- Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not.

Crosscutting Concepts

Patterns
- Patterns in the natural and human designed world can be observed. (2-PS1-1)

Cause and Effect
- Events have causes that generate observable patterns. (2-PS1-4)

Energy and Matter
- Objects may break into smaller pieces and be put together into larger pieces, or change shapes.

Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena
- Scientists search for cause and effect relationships to explain natural events.

Common Core State Standards Connections:
- **ELA/Literacy**
 - RI.2.1: Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)
 - RI.2.2: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)
 - RI.2.8: Evaluate the content of information presented in a variety of forms (read a number of books on a single topic to produce a report; record science observations). (2-PS1-1, 2-PS1-2, 2-PS1-3)

Articulation of DCIs across grade levels:
- **4.ESS2.2 (2-PS1-3)**
- **5.PS1.A (2-PS1-1)**
- **2-PS1-2, 2-PS1-3**
- **5.PS1.B (2-PS1-4), 5.LS2.1 (2-PS1-3)**

November 2013

©2013 Achieve, Inc. All rights reserved.
2-LS2 Ecosystems: Interactions, Energy, and Dynamics

2-LS2.1 Plan and conduct an investigation to determine if plants need sunlight and water to grow. [Assessment Boundary: Assessment is limited to testing one variable at a time.]

2-LS2.2 Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.*

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models
- Modeling in K-2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or story board) that represent concrete events or design solutions.
 - Develop a simple model based on evidence to represent a proposed object or tool. (2-LS2-2)

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in K-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-LS2-1)

Disciplinary Core Ideas

2.LS2.A Interdependent Relationships in Ecosystems
- Plants depend on water and light to grow. (2-LS2-1)
- Plants depend on animals for pollination or to move their seeds around. (2-LS2-2)

2.ESS3.A Developing Possible Solutions
- Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solution to other people. (Secondary to 2-LS2-2)

Crosscutting Concepts

Cause and Effect
- Events have causes that generate observable patterns. (2-LS2-1)

Structure and Function
- The shape and stability of structures of natural and designed objects are related to their function(s). (2-LS2-2)

Connections to other DCS in second grade: N/A

Articulation of DCS across grade levels: K.LS1.C (2-LS2-1); K-ESS3.A (2-LS2-1); K.ETS1.A (2-LS2-2); S.LS1.C (2-LS2-1); S.LS2.A (2-LS2-2)

Common Core State Standards Connections:

ELA/Literacy –
- W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-LS2-1)
- W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-LS2-1)
- SL.2.5 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (2-LS2-2)

Mathematics –
- MP.2 Reason abstractly and quantitatively. (2-LS2-1)
- MP.4 Model with mathematics. (2-LS2-1, 2-LS2-2)
- MP.5 Use appropriate tools strategically. (2-LS2-1)
- 2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems. (2-LS2-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013
©2013 Achieve, Inc. All rights reserved.
2-LS4: Biological Evolution: Unity and Diversity

Students who demonstrate understanding can:

2-LS4-1. Make observations of plants and animals to compare the diversity of life in different habitats. [Clarification Statement: Emphasis is on the diversity of living things in each of a variety of different habitats.] [Assessment Boundary: Assessment does not include specific animal and plant names in specific habitats.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>LS4.D: Biodiversity and Humans</td>
<td></td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explorations or design solutions.</td>
<td>• There are many different kinds of living things in any area, and they exist in different places on land and in water. (2-LS4-1)</td>
<td></td>
</tr>
<tr>
<td>• Make observations (firsthand or from media) to collect data which can be used to make comparisons. (2-LS4-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to Nature of Science

Sciences are based on empirical evidence

- Scientists look for patterns and order when making observations about the world. (2-LS4-1)

Connections to other DCIs in second grade: N/A

Articulation of DCIs across grade levels: 3.LS4.C (2-LS4-1); 3.LS4.D (2-LS4-1); 5.LS2.A (2-LS4-1)

Common Core State Standards Connections:

ELA/Literacy —

W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-LS4-1)

W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-LS4-1)

Mathematics —

MP.2 Reason abstractly and quantitatively. (2-LS4-1)

MP.4 Model with mathematics. (2-LS4-1)

2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems. (2-LS4-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas*. Integrated and reprinted with permission from the National Academy of Sciences.*

November 2013

©2013 Achieve, Inc. All rights reserved.
2-ESS1 Earth’s Place in the Universe

Students who demonstrate understanding can:

2-ESS1-1. Use information from several sources to provide evidence that Earth events can occur quickly or slowly.

[Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occurs slowly.][Assessment Boundary: Assessment does not include quantitative measurements of timescales.]

The performance expectations above were developed using the following elements from the NRC, document *A Framework for K-12 Science Education.*

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Constructing Explanations and Designing Solutions</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing explanations and designing solutions in K-2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.</td>
<td>ESS1.C: The History of Planet Earth
Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe. (2-ESS1-1)</td>
<td>Stability and Change
Things may change slowly or rapidly. (2-ESS1-1)</td>
</tr>
<tr>
<td>Make observations from several sources to construct an evidence-based account for natural phenomena. (2-ESS1-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DPs in second grade: N/A

Articulation of DPs across grade levels:

- 3.ESS2.C (2-ESS1-1), 4.ESS1.C (2-ESS1-1), 4.ESS2.A (2-ESS1-1)

Common Core State Standards Connections:

ELA/Literacy

- **RL.2.1** Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-ESS1-1)
- **RL.2.3** Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-ESS1-1)
- **W.2.6** With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (2-ESS1-1)
- **W.2.7** Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-ESS1-1)
- **W.2.8** Recall information from experiences or gather information from provided sources to answer a question. (2-ESS1-1)
- **SL.2.2** Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. (2-ESS1-1)

Mathematics

- **MP.2** Reason abstractly and quantitatively. (2-ESS1-1)
- **MP.4** Model with mathematics. (2-ESS1-1)
- **2.NBT.A** Understand place value. (2-ESS1-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas.* Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved.
2-ESS2 Earth's Systems

Students who demonstrate understanding can:

2-ESS2-1. Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.*
 [Comparison Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]

2-ESS2-2. Develop a model to represent the shapes and kinds of land and bodies of water in an area. [Assessment Boundary: Assessment does not include quantitative scaling in models.]

2-ESS2-3. Obtain information to identify where water is found on Earth and that it can be solid or liquid.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>ESS2A: Earth Materials and Systems</td>
<td></td>
</tr>
</tbody>
</table>
| Modeling in K-2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diagram, dramatization, or storyboard) that represent concrete events or design solutions.
| Develop a model to represent patterns in the natural world. (2-ESS2-2) |
| Constructing Explanations and Designing Solutions |
| Constructing explanations and designing solutions in K-2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions. |
| Compare multiple solutions to a problem. (2-ESS2-1) |
| Obtaining, Evaluating, and Communicating Information |
| Obtaining, evaluating, and communicating information in K-2 builds on prior experiences and uses observations and tests to communicate new information. |
| Obtain information using various texts, text features (e.g., headings, tables of contents, glossaries, electronic menus, icons), and other media that will be useful in answering a scientific question. (2-ESS2-3) |
| ESS2B: Plate Tectonics and Large-Scale System Interactions |
| Maps show where things are located. One can map the shapes and kinds of land and water in an area. (2-ESS2-2) |
| ESS2C: The Roles of Water in Earth's Surface Processes |
| Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form. (2-ESS2-3) |
| ETS1A: Optimizing the Design Solution |
| Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-3) |
| Patterns |
| Patterns in the natural world can be observed. (2-ESS2-2), (2-ESS2-3) |
| Stability and Change |
| Things may change slowly or rapidly. (2-ESS2-1) |

Connections to other DCIs in second grade: 2.PS1.A (2-ESS2-3)

Articulation of DCIs across grade-levels: K.ETS1.A (2-ESS2-1); 1.ESS2A (2-ESS2-1); 4.ESS2A (2-ESS2-2); 4.ESS2B (2-ESS2-2); 4.ETS1A (2-ESS2-2); 4.ETS1B (2-ESS2-2); 4.ETS1C (2-ESS2-2); 5.ESS2A (2-ESS2-3), 5.ESS2B (2-ESS2-3)

Common Core State Standards Connections:

ELA/Literacy --
R1.2.3 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-ESS2-1)
R1.2.9 Compare and contrast the most important points presented by two texts on the same topic. (2-ESS2-1)
W.2.6 With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (2-ESS2-3)
W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-ESS2-3)
SL.2.3 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (2-ESS2-2)

Mathematics --
MP.2 Reason abstractly and quantitatively. (2-ESS2-1), (2-ESS2-2)
MP.4 Model with mathematics. (2-ESS2-1), (2-ESS2-2)
MP.5 Use appropriate tools strategically. (2-ESS2-1)
2.NBT.A.3 Read and write numbers to 1000 using base-ten numerals, number names, and expanded form. (2-ESS2-2)
2.MD.B.5 Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem. (2-ESS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section titled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013
©2013 Achieve, Inc. All rights reserved.
K-2-ETS1 Engineering Design

Students who demonstrate understanding can:

K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

K-2-ETS1-2. Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

K-2-ETS1-3. Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>ETS1A: Defining and Dealing Engineering Problems</td>
<td>Structure and Function</td>
</tr>
<tr>
<td>Asking questions and defining problems in K-2 builds on prior experiences and progresses to simple descriptive questions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ask questions based on observations to find more information about the natural and/or designed world(s). (K-2-ETS1-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Define a simple problem that can be solved through the development of a new or improved object or tool. (K-2-ETS1-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developing and Using Models</td>
<td>ETS1B: Developing Possible Solutions</td>
<td></td>
</tr>
<tr>
<td>Modeling in K-2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diagram, dramatization, or storyboard) that represent concrete events or design solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Develop a simple model based on evidence to represent a proposed object or tool. (K-2-ETS1-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ETS1C: Optimizing the Design Solution</td>
<td></td>
</tr>
<tr>
<td>Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Analyze data from tests of an object or tool to determine if it works as intended. (K-2-ETS1-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connections to K-2-ETS1A: Defining and Dealing Engineering Problems include:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kindergarten: K-FS2-2, K-ESS3-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connections to K-2-ETS1B: Developing Possible Solutions include:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kindergarten: K-ESS3-3; First Grade: 1-PS4-1, Second Grade: 2-LS2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connections to K-2-ETS1C: Optimizing the Design Solution Include:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Grade: 2-ESS2-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Articulation of DCIs across grade-bands: 3-S.ETS1A (K-2-ETS1-1), (K-2-ETS1-2), (K-2-ETS1-3); 3-S.ETS1B (K-2-ETS1-2), (K-2-ETS1-3); 3-S.ETS1C (K-2-ETS1-1), (K-2-ETS1-2), (K-2-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy --

RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (K-2-ETS1-1)

W.2.6 With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (K-2-ETS1-1), (K-2-ETS1-3)

SL.2.5 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (K-2-ETS1-2)

Mathematics --

MP.2 Reason abstractly and quantitatively. (K-2-ETS1-1), (K-2-ETS1-3)

MP.4 Model with mathematics. (K-2-ETS1-1), (K-2-ETS1-3)

MP.5 Use appropriate tools strategically. (K-2-ETS1-1), (K-2-ETS1-3)

2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (K-2-ETS1-1), (K-2-ETS1-3)

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas, Integrated and reprinted with permission from the National Academy of Sciences. November 2013 ©2013 Achieve, Inc. All rights reserved."
Third Grade

The performance expectations in third grade help students formulate answers to questions such as: “What is typical weather in different parts of the world and during different times of the year? How can the impact of weather-related hazards be reduced? How do organisms vary in their traits? How are plants, animals, and environments of the past similar or different from current plants, animals, and environments? What happens to organisms when their environment changes? How do equal and unequal forces on an object affect the object? How can magnets be used?” Third grade performance expectations include PS2, LS1, LS2, LS3, LS4, ESS2, and ESS3 Disciplinary Core Ideas from the NRC Framework. Students are able to organize and use data to describe typical weather conditions expected during a particular season. By applying their understanding of weather-related hazards, students are able to make a claim about the merit of a design solution that reduces the impacts of such hazards. Students are expected to develop an understanding of the similarities and differences of organisms’ life cycles. An understanding that organisms have different inherited traits, and that the environment can also affect the traits that an organism develops, is acquired by students at this level. In addition, students are able to construct an explanation using evidence for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. Students are expected to develop an understanding of types of organisms that lived long ago and also about the nature of their environments. Third graders are expected to develop an understanding of the idea that when the environment changes some organisms survive and reproduce, some move to new locations, some move into the transformed environment, and some die. Students are able to determine the effects of balanced and unbalanced forces on the motion of an object and the cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. They are then able to apply their understanding of magnetic interactions to define a simple design problem that can be solved with magnets. The crosscutting concepts of patterns; cause and effect; scale, proportion, and quantity; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the third grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions and defining problems; developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
3-PS2 Motion and Stability: Forces and Interactions

3-PS2.1 Motion and Stability: Forces and Interactions

Students who demonstrate understanding can:

3-PS2-1. Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. [Clarification Statement: Examples could include an unbalanced force on one side of a ball can make it start moving; and, balanced forces pushing on a box from both sides will not produce any motion at all.] [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to geometry being addressed as a force that pulls objects down.]

3-PS2-2. Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a seesaw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]

3-PS2-3. Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paper clips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]

3-PS2-4. Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]

The performance expectations above were developed using the following elements from the Next Generation Science Education (NGSE):

Science and Engineering Practices

- Asking Questions and Defining Problems
- Planning and Carrying Out Investigations
- Obtaining, Evaluating, and Communicating Information
- Science and Engineering Practices Crosscutting Concepts
- Cause and Effect
- Connections to Other Disciplines

Disciplinary Core Ideas

Science Knowledge is Based on Empirical Evidence

- Scientific Investigations Use a Variety of Methods
- Science investigations use a variety of methods, tools, and techniques. (3-PS2-2)

Common Core State Standards Connections:
- ELA/Literacy - RI.3.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-PS2-1)(3-PS2-3)
- RI.3.3 Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-PS2-3)
- RI.3.8 Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). (3-PS2-3)
- W.3.7 Conduct short research projects that build knowledge about a topic. (3-PS2-1)(3-PS2-2)
- W.3.8 Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-PS2-1)(3-PS2-2)
- SL.3.3 Ask and answer questions about information from a speaker, offering appropriate elaboration and detail. (3-PS2-3)

Mathematics

- MP.2 Reason abstractly and quantitatively. (3-PS2-1)
- MP.5 Use appropriate tools strategically. (3-PS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

November 2013
©2013 Achieve, Inc. All rights reserved.
3-LS1 From Molecules to Organisms: Structures and Processes

3-LS1. From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

3-LS1-1. Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. [Clarification Statement: Changes organisms go through during their life form a pattern.] [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering plants. Assessment does not include details of human reproduction.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| **Developing and Using Models** Modeling in 3-5 builds on K-2 experiences and progresses to building and revisiting simple models and using models to represent events and design solutions.
 - Develop models to describe phenomena. (3-LS1-1) | **LS1.B: Growth and Development of Organisms**
 - Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles. (3-LS1-1) | **Patterns**
 - Patterns of change can be used to make predictions. (3-LS1-1) |

Connections to Nature of Science
- Science findings are based on recognizing patterns. (3-LS1-1)

Articulation of DCIs across grade-levels: **MS.LS1.B** (3-LS1-1)

Common Core State Standards Connections:

- **ELA/Literacy—** Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g., where, when, why, and how key events occur). (3-LS1-1)

- **SL.3.S** Create engaging audio recordings of stories or poems that demonstrate fluid reading at an understandable pace; add visual displays when appropriate to emphasize or enhance certain facts or details. (3-LS1-1)

- **Mathematics—**
 - **MP.4** Model with mathematics. (3-LS1-1)
 - **3.NBT** Number and Operations in Base Ten (3-LS1-1)
 - **3.NF** Number and Operations—Fractions (3-LS1-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas*. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013
©2013 Achieve, Inc. All rights reserved.
3-LS2 Ecosystems: Interactions, Energy, and Dynamics

3-LS2.1. Construct an argument that some animals form groups that help members survive.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>LS2.D: Social Interactions and Group Behavior</td>
<td></td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Construct an argument with evidence, data, and/or a model. (3-LS2-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved.
3-LS3 Heredity: Inheritance and Variation of Traits

Students who demonstrate understanding can:

3-LS3-1. Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. [Clarification Statement: Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.] [Assessment boundary: Assessment does not include genetic mechanisms of inheritance and prediction of traits. Assessment is limited to non-human examples.]

3-LS3-2. Use evidence to support the explanation that traits can be influenced by the environment. [Clarification Statement: Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted; and, a pot dog that is given too much food and little exercise may become overweight.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Analyzing and Interpreting Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing data in 3-5 builds on K-2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.</td>
</tr>
<tr>
<td>- Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS3-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructing Explanations and Designing Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing explanations and designing solutions in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
</tr>
<tr>
<td>- Use evidence (e.g., observations, patterns) to support an explanation. (3-LS3-2)</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>LS3.A: Inheritance of Traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Many characteristics of organisms are inherited from their parents. (3-LS3-1)</td>
</tr>
<tr>
<td>- Other characteristics result from individuals' interactions with the environment, which can range from diet to learning. Many characteristics involve both inheritance and environment. (3-LS3-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS3.B: Variation of Traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Different organisms vary in how they look and function because they have different inherited information. (3-LS3-1)</td>
</tr>
<tr>
<td>- The environment also affects the traits that an organism develops. (3-LS3-2)</td>
</tr>
</tbody>
</table>

Crosscutting Concepts

<table>
<thead>
<tr>
<th>Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Similarities and differences in patterns can be used to sort and classify natural phenomena. (3-LS3-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cause and Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Cause and effect relationships are routinely identified and used to explain change. (3-LS3-2)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in third grade: N/A

Articulation of DCIs across grade levels: 1.LS3.A (3-LS3-1); 1.LS3.B (3-LS3-1); MS.LS3.A (3-LS3-2); MS.LS3.B (3-LS3-1); MS.LS3.C (3-LS3-2)

Common Core State Standards Connections:

ELA/Literacy --

RI.3.1. Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-LS3-1),(3-LS3-2)

RI.3.2. Determine the main idea of a text; recount key details and explain how they support the main idea. (3-LS3-1),(3-LS3-2)

RI.3.3. Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-LS3-1),(3-LS3-2)

W.3.2. Write informative/explanatory texts to examine a topic or convey ideas and information clearly, (3-LS3-1),(3-LS3-2)

SL.3.4. Report a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-LS3-1),(3-LS3-2)

Mathematics --

MP.2. Reason abstractly and quantitatively. (3-LS3-1),(3-LS3-2)

MP.4. Model with mathematics. (3-LS3-1),(3-LS3-2)

3.MD.B.4. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. (3-LS3-1),(3-LS3-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved.
3-LS4 Biological Evolution: Unity and Diversity

3-LS4-1. Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. [Clarification Statement: Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms.] [Assessment Boundary: Assessment does not include identification of specific fossils or present plants and animals. Assessment is limited to major fossil types and relative ages.]

3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals of a species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger flowers than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]

3-LS4-3. Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. [Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.]

3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* [Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.] [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.]

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>LS2.C: Ecosystem Dynamics, Functioning, and Resilience</td>
<td></td>
</tr>
<tr>
<td>Analyzing data in 3-5 builds on K-2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.</td>
<td>- When the environment changes in ways that affect a place's physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (secondary to 3-LS4-9)</td>
<td></td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>LS4.A: Evidence of Common Ancestry and Divergence</td>
<td></td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena in designing multiple solutions to design problems.</td>
<td>- Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (Note: moved from K-2) (3-LS4-1)</td>
<td></td>
</tr>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>LS4.B: Natural Selection</td>
<td></td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3-5 builds on K-2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td>- Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing. (3-LS4-2)</td>
<td></td>
</tr>
<tr>
<td>Connecting to other DCIs in third grade: 3-LS4.C (3-LS4-2); 3-ESS2.D (3-LS4-3); 3-ESS3.B (3-LS4-4)</td>
<td>LS4.C: Adaptation</td>
<td></td>
</tr>
<tr>
<td>Articulation of DCIs across grade levels: K-ESS2.A (3-LS4-3); 3-LS4-4); K-ETS1.A (3-LS4-4); 1.LS1.A (3-LS4-2); 1.LS2.A (3-LS4-3); 1.LS4.D (3-LS4-2); 1.LS4.D (3-LS4-3); 3-LS4-4); 4.ESS1.C (3-LS4-1); 4.ESS2.B (3-LS4-4); 4.ESS1.A (3-LS4-1); 4-LS1.A (3-LS4-3); 4-LS2.A (3-LS4-3); 4-LS3.B (3-LS4-3); 4-LS4.D (3-LS4-4); 5-LS1.A (3-LS4-1); 5-LS4.B (3-LS4-2); 5-LS4.C (3-LS4-3); 5-LS4.D (3-LS4-4); 5-ESS1.C (3-LS4-3); 5-ESS2.A (3-LS4-3); 5-ESS3.B (3-LS4-4); 5-ESS3.C (3-LS4-4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences. November 2013 ©2013 Achieve, Inc. All rights reserved.
3-ESS2 Earth's Systems

Students who demonstrate understanding can:

3-ESS2-1. Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]

3-ESS2-2. Obtain and combine information to describe climates in different regions of the world.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
</tr>
<tr>
<td>Analyzing data in 3-5 builds on K-2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.</td>
</tr>
<tr>
<td>- Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships. (3-ESS2-1)</td>
</tr>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
</tr>
<tr>
<td>Obtaining, evaluating, and communicating information in 3-5 builds on K-2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.</td>
</tr>
<tr>
<td>- Obtain and combine information from books and other reliable media to explain phenomena. (3-ESS2-2)</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>ESS2.D: Weather and Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (3-ESS2-1)</td>
</tr>
<tr>
<td>- Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years. (3-ESS2-2)</td>
</tr>
</tbody>
</table>

Crosscutting Concepts

<table>
<thead>
<tr>
<th>Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Patterns of change can be used to make predictions. (3-ESS2-1), (3-ESS2-2)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas.* Integrated and reprinted with permission from the National Academy of Sciences.
3-ESS3 Earth and Human Activity

Students who demonstrate understanding can:

3-ESS3-1. Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed worlds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-ESS3-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESS3.B: Natural Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (3-ESS3-1) (Note: This Disciplinary Core Idea is also addressed by 4-ESS3-3.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause and Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause and effect relationships are routinely identified, tested, and used to explain change. (3-ESS3-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

- Engineers improve existing technologies or develop new ones to increase their benefits (e.g., better artificial limbs), decrease known risks (e.g., seatbelts in cars), and meet societal demands (e.g., cell phones). (3-ESS3-1)

Connections to Nature of Science

Science is a Human Endeavor

- Science affects everyday life. (3-ESS3-1)

Articulation of DCIs across grade levels: K.ETS1.A (3-ESS3-1); 4.ETS1.A (3-ESS3-1); MS.ETS3.B (3-ESS3-1); 4.ETS1.A (3-ESS3-1); MS.ETS3.B (3-ESS3-1)

Common Core State Standards Connections:

ELA/Literacy

- W.3.1 Write opinion pieces on topics or texts, supporting a point of view with reasons. (3-ESS3-1)
- W.3.7 Conduct short research projects that build knowledge about a topic. (3-ESS3-1)

Mathematics

- MP.2 Reason abstractly and quantitatively. (3-ESS3-1)
- MP.4 Model with mathematics. (3-ESS3-1)

The performance expectations marked with an asterisk integrates traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
Fourth Grade

The performance expectations in fourth grade help students formulate answers to questions such as: "What are waves and what are some things they can do? How can water, ice, wind and vegetation change the land? What patterns of Earth's features can be determined with the use of maps? How do internal and external structures support the survival, growth, behavior, and reproduction of plants and animals? What is energy and how is it related to motion? How is energy transferred? How can energy be used to solve a problem?" Fourth grade performance expectations include PS3, PS4, LS1, ESS1, ESS2, ESS3, and ETS1 Disciplinary Core Ideas from the NRC Framework. Students are able to use a model of waves to describe patterns of waves in terms of amplitude and wavelength, and that waves can cause objects to move. Students are expected to develop understanding of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. They apply their knowledge of natural Earth processes to generate and compare multiple solutions to reduce the impacts of such processes on humans. In order to describe patterns of Earth's features, students analyze and interpret data from maps. Fourth graders are expected to develop an understanding that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. By developing a model, they describe that an object can be seen when light reflected from its surface enters the eye. Students are able to use evidence to construct an explanation of the relationship between the speed of an object and the energy of that object. Students are expected to develop an understanding that energy can be transferred from place to place by sound, light, heat, and electric currents or from object to object through collisions. They apply their understanding of energy to design, test, and refine a device that converts energy from one form to another. The crosscutting concepts of patterns; cause and effect; energy and matter; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the fourth grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
4-PS3 Energy

Students who demonstrate understanding can:

4-PS3-1. Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]

4-PS3-2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

4-PS3-3. Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Examples of objects could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and a passing solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

**4-PS3-4. Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passing solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Science and Engineering Practices

Asking Questions and Defining Problems

- Asking questions and defining problems in grades 3-5 builds on grades K-2 experiences and progressions to specifying qualitative relationships.
- Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships. (4-PS3-3)

Planning and Carrying Out Investigations

- Planning and carrying out investigations to answer questions or test solutions to problems in 3-5 builds on K-2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
- Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (4-PS3-2)

Constructing Explanations and Designing Solutions

- Constructing explanations and designing solutions in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.
- Use evidence (e.g., measurements, observations, patterns) to construct an explanation. (4-PS3-1)
- Apply scientific ideas to solve design problems. (4-PS3-4)

Disciplinary Core Ideas

PS3.A: Definitions of Energy

- The faster a given object is moving, the more energy it possesses. (4-PS3-1)
- Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-2, 4-PS3-3)

PS3.B: Conservation of Energy and Energy Transfer

- Energy is conserved whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically transferred to the surrounding air as a result, the air gets heated and sound is produced. (4-PS3-2, 4-PS3-3)
- Light also transfers energy from place to place. (4-PS3-4)
- Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2, 4-PS3-4)

PS3.C: Relationship Between Energy and Forces

- When objects collide, the contact forces transfer energy so as to change the objects' motions. (4-PS3-3)

PS3.D: Energy in Chemical Processes and Everyday Life

- The expression "produce energy" typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4)

ETS1.A: Defining Engineering Problems

- Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each one takes the constraints into account. (secondary to 4-PS3-4)

Crosscutting Concepts

Energy and Matter

- Energy can be transferred in various ways and between objects. (4-PS3-1, 4-PS3-2, 4-PS3-3, 4-PS3-4)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

- Engineers improve existing technologies or develop new ones. (4-PS3-4)

Connections to Nature of Science

Science as a Human Endeavor

- Most scientists and engineers work in teams. (4-PS3-4)

- Science affects everyday life. (4-PS3-4)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013

©2013 Achieve, Inc. All rights reserved.

31 of 103
4-PS4 Waves and their Applications in Technologies for Information Transfer

Students who demonstrate understanding can:

4-PS4-1. Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]

4-PS4-2. Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. [Assessment Boundary: Assessment does not include knowledge of specific colors reflected and seen, the cellular mechanisms of vision, or how the retina works.]

4-PS4-3. Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, a grid of 1s and 0s representing black and white to send information about a picture, and using Morse code to send text.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
</tr>
<tr>
<td>Modeling in 3-5 builds on K-2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
</tr>
<tr>
<td>1. Develop a model using an analogy, example, or abstract representation to describe a scientific principle. (4-PS4-1)</td>
</tr>
<tr>
<td>2. Develop a model to describe phenomena. (4-PS4-2)</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
</tr>
<tr>
<td>1. Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-PS4-3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS4A Wave Properties</td>
</tr>
<tr>
<td>Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K-2.) (4-PS4-1)</td>
</tr>
<tr>
<td>Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). (4-PS4-1)</td>
</tr>
<tr>
<td>PS4B Electromagnetic Radiation</td>
</tr>
<tr>
<td>An object can be seen when light reflected from its surface enters the eyes. (4-PS4-2)</td>
</tr>
<tr>
<td>PS4C Information Technologies and Instrumentation</td>
</tr>
<tr>
<td>Digitalized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digital form to voice—and vice versa. (4-PS4-3)</td>
</tr>
<tr>
<td>ETS1C Optimizing The Design Solution</td>
</tr>
<tr>
<td>Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and constraints. (secondary to 4-PS4-3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patterns</td>
</tr>
<tr>
<td>Similarties and differences in patterns can be used to sort and classify natural phenomena. (4-PS4-1)</td>
</tr>
<tr>
<td>Similarties and differences in patterns can be used to sort and classify designed products. (4-PS4-3)</td>
</tr>
<tr>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Cause and effect relationshios are routinely identified. (4-PS4-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connections to Nature of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Knowledge is Based on Empirical Evidence</td>
</tr>
<tr>
<td>Science findings are based on recognizing patterns. (4-PS4-1)</td>
</tr>
</tbody>
</table>

| Connections to other DCIs in fourth grade: 4-PS3A (4-PS4-1); 4-PS3B (4-PS4-1); 4-PS3C (4-PS4-1); 4-ETS1A (4-PS4-3) |
| Articulation of DCIs across grade levels: K.ETS1A (4-PS4-3); 1.ETS1A (4-PS4-3); 1.ETS1B (4-PS4-3); 1.ETS1C (4-PS4-3); 2.ETS1A (4-PS4-3); 2.ETS1B (4-PS4-3); 2.ETS1C (4-PS4-3); 3.ETS1A (4-PS4-3); 3.ETS1B (4-PS4-3); 4.ETS1C (4-PS4-3); MS.ETS1A (4-PS4-3); MS.ETS1B (4-PS4-3); MS.ETS1C (4-PS4-3) |
| Common Core State Standards Connections: |
| ELA/Literacy – |
| RL.1.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS4-3) |
| RL.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS4-3) |
| SL.4.5 Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-PS4-1),(4-PS4-2) |
| Mathematics – |
| MP.4 Model with mathematics. (4-PS4-1),(4-PS4-2) |
| 4.G.A.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-1),(4-PS4-2) |

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013
©2013 Achieve, Inc. All rights reserved.
4-LS1 From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]

4-LS1-2. Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. [Clarification Statement: Emphasis is on systems of information transfer.] [Assessment Boundary: Assessment does not include the mechanisms by which the brain stores and recalls information or the mechanisms of how sensory receptors function.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education.*

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>LS1.A: Structure and Function</td>
<td></td>
</tr>
<tr>
<td>Modeling in 3-5 builds on K-2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
<td>- Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (4-LS1-1)</td>
<td></td>
</tr>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>LS1.B: Information Processing</td>
<td></td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3-5 builds on K-2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td>- Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal's brain. Animals are able to use their perceptions and memories to guide their actions. (4-LS1-2)</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCS in fourth grade: N/A

Articulation of DCS across grade-levels: 1.LS1.A (4-LS1-1); 1.LS1.D (4-LS1-2); 2.LS3.B (4-LS1-1); MS.LS1.A (4-LS1-1); MS.LS1.B (4-LS1-2); MS.LS1.D (4-LS1-2)

Common Core State Standards Connections:

ELA/Literacy –

W.4.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (4-LS1-1)

SL.4.5 Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-LS1-2)

Mathematics –

4.G.A.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded across the line into matching parts. Identify line-symmetric figures and draw lines of symmetry. (4-LS1-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas.* Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved. 33 of 103
4-ESS1 Earth’s Place in the Universe

Students who demonstrate understanding can:

4-ESS1-1. Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time; and, a canyon with different rock layers in the walls and a river in the bottom, indicating that over time a river cut through the rock.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Identify the evidence that supports particular points in an explanation. (4-ESS1-1)

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth

- Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (4-ESS1-1)

Crosscutting Concepts

Patterns

- Patterns can be used as evidence to support an explanation. (4-ESS1-1)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

- Science assumes consistent patterns in natural systems. (4-ESS1-1)

Connections to other DCS in fourth grade: N/A

Articulation of DCS across grade levels: 2.ESS1.C (4-ESS1-1); 3.LS4.A (4-ESS1-1); MS.LS4.A (4-ESS1-1); MS.ESS1.C (4-ESS1-1) MS.ESS2.A (4-ESS1-1); MS.ESS2.B (4-ESS1-1)

Common Core State Standards Connections:

ELA/Literacy --

W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ESS1-1)

W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ESS1-1)

W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-ESS1-1)

Mathematics --

MP.2 Reason abstractly and quantitatively. (4-ESS1-1)

MP.4 Model with mathematics. (4-ESS1-1)

4.MD.A.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g, lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. (4-ESS1-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved. 34 of 103
4-ESS2 Earth's Systems

Students who demonstrate understanding can:

4-ESS2-1. Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]

4-ESS2-2. Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Science and Engineering Practices

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
- Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (4-ESS2-1)

Analyzing and Interpreting Data
- Analysing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.
- Analyze and interpret data to make sense of phenomena using logical reasoning. (4-ESS2-2)

Disciplinary Core Ideas

ESS2.A: Earth Materials and Systems
- Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. (4-ESS2-1)

ESS2.B: Plate Tectonics and Large-Scale System Interactions
- The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth. (4-ESS2-2)

ESS2.E: Biogeography
- Living things affect the physical characteristics of their regions. (4-ESS2-1)

Crosscutting Concepts

Patterns
- Patterns can be used as evidence to support an explanation. (4-ESS2-2)

Cause and Effect
- Cause and effect relationships are routinely identified, tested, and used to explain change. (4-ESS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*

November 2013 ©2013 Achieve, Inc. All rights reserved.
Science and Engineering Practices

<table>
<thead>
<tr>
<th>Constructing Explanations and Designing Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing explanations and designing solutions in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
</tr>
<tr>
<td>Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-ESS3-2)</td>
</tr>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
</tr>
<tr>
<td>Obtaining, evaluating, and communicating information in 3-5 builds on K-2 experiences and progresses to evaluate the merit and accuracy of ideas and methods.</td>
</tr>
<tr>
<td>Obtain and combine information from books and other reliable media to explain phenomena. (4-ESS3-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS3.A: Natural Resources</td>
</tr>
<tr>
<td>Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not. (4-ESS3-1)</td>
</tr>
<tr>
<td>ESS3.B: Natural Hazards</td>
</tr>
<tr>
<td>A variety of hazards result from natural processes (e.g., earthquakes, hurricanes, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (4-ESS3-2) (Note: This Disciplinary Core Idea can also be found in 3.WC)</td>
</tr>
<tr>
<td>ETS3.B: Designing Solutions to Engineering Problems</td>
</tr>
<tr>
<td>Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)</td>
</tr>
</tbody>
</table>

Crosscutting Concepts

<table>
<thead>
<tr>
<th>Cause and effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause and effect relationships are routinely identified and used to explain change. (4-ESS3-1)</td>
</tr>
<tr>
<td>Cause and effect relationships are routinely identified, tested, and used to explain change. (4-ESS3-2)</td>
</tr>
</tbody>
</table>

Connections to Engineering, Technology, and Applications of Science

<table>
<thead>
<tr>
<th>Interdependence of Science, Engineering, and Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of relevant scientific concepts and research findings is important in engineering. (4-ESS3-1)</td>
</tr>
<tr>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
<tr>
<td>Over time, people's needs and wants change, as do their demands for new and improved technologies. (4-ESS3-1)</td>
</tr>
<tr>
<td>Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands. (4-ESS3-2)</td>
</tr>
</tbody>
</table>

Connections to Other DCIs in Fourth Grade: 4.ETS1.C (4-ESS3-2)

| Articulation of DCIs across grade levels: 4.ETS1.A (4-ESS3-2); 4.ETS1.B (4-ESS3-2); 4.ETS1.C (4-ESS3-2); 4.ESS3.C (4-ESS3-1); 5.ESS3.D (4-ESS3-1); MS.ESS2.A (4-ESS3-1); MS.ESS3.A (4-ESS3-1); MS.ESS3.B (4-ESS3-2); MS.ESS3.C (4-ESS3-1); MS.ESS3.D (4-ESS3-1); MS.ESS1.B (4-ESS3-2) |

Common Core State Standards Connections:

<table>
<thead>
<tr>
<th>ELA/Literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-ESS3-2)</td>
</tr>
<tr>
<td>RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-ESS3-2)</td>
</tr>
<tr>
<td>W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ESS3-1)</td>
</tr>
<tr>
<td>W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ESS3-1)</td>
</tr>
<tr>
<td>W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-ESS3-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.2 Reason abstractly and quantitatively. (4-ESS3-1), (4-ESS3-2)</td>
</tr>
<tr>
<td>MP.4 Model with mathematics. (4-ESS3-1), (4-ESS3-2)</td>
</tr>
<tr>
<td>4.OA.A.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 x 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. (4-ESS3-1), (4-ESS3-2)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013
©2013 Achieve, Inc. All rights reserved.
Fifth Grade

The performance expectations in fifth grade help students formulate answers to questions such as: "When matter changes, does its weight change? How much water can be found in different places on Earth? Can new substances be created by combining other substances? How does matter cycle through ecosystems? Where does the energy in food come from and what is it used for? How do lengths and directions of shadows or relative lengths of day and night change from day to day, and how does the appearance of some stars change in different seasons?"

Fifth grade performance expectations include PS1, PS2, PS3, LS1, LS2, ESS1, ESS2, and ESS3 Disciplinary Core Ideas from the NRC Framework. Students are able to describe that matter is made of particles too small to be seen through the development of a model. Students develop an understanding of the idea that regardless of the type of change that matter undergoes, the total weight of matter is conserved. Students determine whether the mixing of two or more substances results in new substances. Through the development of a model using an example, students are able to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. They describe and graph data to provide evidence about the distribution of water on Earth. Students develop an understanding of the idea that plants get the materials they need for growth chiefly from air and water. Using models, students can describe the movement of matter among plants, animals, decomposers, and the environment and that energy in animals’ food was once energy from the sun. Students are expected to develop an understanding of patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. The crosscutting concepts of patterns; cause and effect; scale, proportion, and quantity; energy and matter; and systems and systems models are called out as organizing concepts for these disciplinary core ideas. In the fifth grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, using mathematics and computational thinking, engaging in argument from evidence, and obtaining, evaluating, and communicating information; and to use these practices to demonstrate understanding of the core ideas.
5-PS1 Matter and Its Interactions

Students who demonstrate understanding can:

5-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]

5-PS1-2. Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing among different types of interactions.]

5-PS1-3. Make observations and measurements to identify materials based on their properties. [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic force, and solubility; density is not intended as an identifiable property.] [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]

5-PS1-4. Conduct an investigation to determine whether the mixing of two or more substances results in new substances. [Clarification Statement: What constitutes a new substance is not explained.]

Science and Engineering Practices

Living in a digital world. These performance expectations were developed using the following elements from the NGSS: Science and Engineering Practices; Crosscutting Concepts; Disciplinary Core Ideas.

Disciplinary Core Ideas

5-PS1.A: Structure and Properties of Matter
- Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. (5-PS1-1)
- The amount (weight) of matter in a substance does not change when it changes form, even in transitions in which it seems to vanish. (5-PS1-2)
- Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3)

5-PS1.B: Chemical Reactions
- When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4)
- No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) (5-PS1-2)

Crosscutting Concepts

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes consistent patterns in natural systems. (5-PS1-2)

Common Core State Standards Connections:

ELA/Literacy:
R1.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-PS1-1)

W.5.7 Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (5-PS1-2)
W.5.8 Recall relevant information from experiences or gather relevant information from print and digital sources; summarize and paraphrase information in notes and finished work, and provide a list of sources. (5-PS1-2)
W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-PS1-2)

Mathematics –
MP.2 Reason abstractly and quantitatively. (5-PS1-2)
MP.4 Model with mathematics. (5-PS1-2)
MP.5 Use appropriate tools strategically. (5-PS1-2)

5.NBT.A.1 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. (5-PS1-1)
5.NF.A.7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (5-PS1-1)
5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems. (5-PS1-1)
5.MD.C.3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. (5-PS1-1)
5.MD.C.4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. (5-PS1-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013
©2013 Achieve, Inc. All rights reserved.
5-PS2 Motion and Stability: Forces and Interactions

Students who demonstrate understanding can:

5-PS2-1. Support an argument that the gravitational force exerted by Earth on objects is directed down. [Clarification Statement: "Down" is a local description of the direction that points toward the center of the spherical Earth.] [Assessment Boundary: Assessment does not include mathematical representation of gravitational force.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>PS2.B: Types of Interactions</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td>- The gravitational force of Earth acting on an object near Earth's surface pulls that object toward the planet's center. (5-PS2-1)</td>
<td>- Cause and effect relationships are routinely identified and used to explain change. (5-PS2-1)</td>
</tr>
<tr>
<td>- Support an argument with evidence, data, or a model. (5-PS2-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 3.PS2.A (5-PS2-1); 3.PS2.B (5-PS2-1); **MS.PS2.B** (5-PS2-1); **MS.ESS1.B** (5-PS2-1); **MS.ESS2.C** (5-PS2-1)

Common Core State Standards Connections:

ELA/Literacy –

RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-PS2-1)

RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-PS2-1)

W.5.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-PS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas*. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved. 39 of 103
5-PS3 Energy

Students who demonstrate understanding can:

5-PS3-1. Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>PS3.D: Energy In Chemical Processes and Everyday Life</td>
<td></td>
</tr>
<tr>
<td>Modeling in 3–5 builds on K-2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use models to describe phenomena. (5-PS3-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L5.1.C: Organization for Matter and Energy Flow In Organisms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)</td>
<td></td>
</tr>
<tr>
<td>Connections to other DCIs in 5th grade: N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Articulation of DCIs across grade levels:

<table>
<thead>
<tr>
<th>RL.5.7</th>
<th>SL.5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1.LS1.C (5-PS3-1); 2.LS2.A (5-PS3-1); 4.PS3.A (5-PS3-1); 4.PS3.B (5-PS3-1); 4.PS3.D (5-PS3-1); MS.PS3.D (5-PS3-1); MS.PS4.B (5-PS3-1); MS.LS1.C (5-PS3-1); MS.LS2.A (5-PS3-1)</td>
<td></td>
</tr>
<tr>
<td>Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-PS3-1)</td>
<td></td>
</tr>
<tr>
<td>Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-PS3-1)</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved.

40 of 103
5-LS1 From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.

(Information Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.)

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education.*

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in 3-5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

- Support an argument with evidence, data, or a model. (5-LS1-1)

Disciplinary Core Ideas

- Plants acquire their material for growth chiefly from air and water. (5-LS1-1)

Crosscutting Concepts

Energy and Matter

- Matter is transported into, out of, and within systems. (5-LS1-1)

Connections to other DCIs in fifth grade: 5.PS1.A (5-LS1-1)

Articulation of DCIs across grade levels: K.3S.2.C (5-LS1-1); 2.3S2.A (5-LS1-1); MS.3S1.C (5-LS1-1)

Common Core State Standards Connections:

ELA/Literacy

RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-LS1-1)

RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-LS1-1)

W.5.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-LS1-1)

Mathematics

MP.2 Reason abstractly and quantitatively. (5-LS1-1)

MP.4 Model with mathematics. (5-LS1-1)

MP.5 Use appropriate tools strategically. (5-LS1-1)

5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. (5-LS1-1)

*The performance expectations marked with an asterisk integrates traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas.* Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved.
5-LS2 Ecosystems: Interactions, Energy, and Dynamics

5-LS2-1. Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.

Assessment Boundary: Assessment does not include molecular explanations.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education.*

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>LS2.A: Interdependent Relationships in Ecosystems</td>
<td></td>
</tr>
<tr>
<td>Modeling in 3-5 builds on K-2 models and progresses to building and revising simple models and using models to represent events and design solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Develop a model to describe phenomena. (5-LS2-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Models, Laws, Mechanisms, and Theories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explain Natural Phenomena</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Science explanations describe the mechanisms for natural events. (5-LS2-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connections to Nature of Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCS in fifth grade: 5.PS1.A (5-LS2-1); 5.ESS2.A (5-LS2-1);

Articulation of DCS across grade levels: 2.PS1.A (5-LS2-1); 2.LS4.D (5-LS2-1); 4.ESS2.E (5-LS2-1); MS.PS3.D (5-LS2-1); MS.LS1.C (5-LS2-1); MS.LS2.A (5-LS2-1); MS.LS2.B (5-LS2-1)

Common Core State Standards Connections:

ELA/Literacy

RI.5.7
Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-LS2-1)

SL.5.5
Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-LS2-1)

Mathematics

MP.2
Reason abstractly and quantitatively. (5-LS2-1)

MP.4
Model with mathematics. (5-LS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas.* Integrated and reprinted with permission from the National Academy of Sciences.

November 2013
©2013 Achieve, Inc. All rights reserved.
5-ESS1 Earth’s Place in the Universe

Students who demonstrate understanding can:

5-ESS1-1. Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth. [Assessment Boundary: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness such as stellar masses, age, stage.]

5-ESS1-2. Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. [Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.] [Assessment Boundary: Assessment does not include causes of seasons.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Analyzing and Interpreting Data
Analyzing data in 3-5 builds on K-2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

- Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships. (5-ESS1-2)

Engaging in Argument from Evidence
Engaging in argument from evidence in 3-5 builds on K-2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

- Support an argument with evidence, data, or a model. (5-ESS1-1)

Disciplinary Core Ideas

ESS1.A: The Universe and Its Stars
- The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. (5-ESS1-1)

ESS1.B: Earth and the Solar System
- The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year. (5-ESS1-2)

Crosscutting Concepts

Patterns
- Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural phenomena. (5-ESS1-2)

Scale, Proportion, and Quantity
- Natural objects exist from the very small to the immensely large. (5-ESS1-1)

Common Core State Standards Connections:
ELA/Literacy –
RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-ESS1-1)
RI.5.2 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS1-1)
RI.5.8 Explain how an author uses reasons and evidence to support particular points in a text, identifying which reasons and evidence support which point(3). (5-ESS1-1)
RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-ESS1-1)
W.5.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-ESS1-1)
SL.5.5 Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS1-2)

Mathematics –
MP.2 Reason abstractly and quantitatively. (5-ESS1-1)(5-ESS1-2)
MP.4 Model with mathematics. (5-ESS1-1)(5-ESS1-2)
S.NBT.A.2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. (5-ESS1-1)
S.G.A.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. (5-ESS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

November 2013
©2013 Achieve, Inc. All rights reserved.
43 of 103
5-ESS2 Earth’s Systems

Students who demonstrate understanding can:

5-ESS2-1. Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. [Clarification Statement: Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to the interactions of two systems at a time.]

5-ESS2-2. Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>ESS2.A: Earth Materials and Systems</td>
<td></td>
</tr>
<tr>
<td>Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✴️ Develop a model using an example to describe a scientific principle. (5-ESS2-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Mathematics and Computational Thinking Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✴️ Describe and graph quantities such as area and volume to address scientific questions. (5-ESS2-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESSE2.1: Earth Materials and Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✴️ Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms; shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather. (5-ESS2-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESSE2.2: The Roles of Water in Earth’s Surface Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✴️ Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. (5-ESS2-2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 2-ESS2.1, 3-ESS2.1, 4-ESS2.1, 5-ESS2.1, 6-ESS2.1, 7-ESS2.1, 8-ESS2.1, 9-ESS2.1

Common Core State Standards Connections:

ELA/Literacy –

R1.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS2-1) (5-ESS2-2)

W.5.8 Recall relevant information from experiences or other relevant information from print and digital sources; summarize and paraphrase information in notes and finished work, and provide a list of sources. (5-ESS2-2)

SL.5.5 Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS2-1) (5-ESS2-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (5-ESS2-1) (5-ESS2-2)

MP.4 Model with mathematics. (5-ESS2-1) (5-ESS2-2)

SG.A.2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. (5-ESS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas*. Integrated and reprinted with permission from the National Academy of Sciences.
5-ESS3 Earth and Human Activity

Students who demonstrate understanding can:

5-ESS3-1. Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education.*

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td>ESS3.C: Human Impacts on Earth Systems</td>
<td>Systems and System Models</td>
</tr>
<tr>
<td>Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.</td>
<td>Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments. (S-ESS3-1)</td>
<td>A system can be described in terms of its components and their interactions. (S-ESS3-1)</td>
</tr>
</tbody>
</table>

Connections to Nature of Science

- **Science Addresses Questions About the Natural and Material World.**
 - Science findings are limited to questions that can be answered with empirical evidence. (S-ESS3-1)

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade levels: MS-ESS3.A (S-ESS3-1); MS-ESS3.C (S-ESS3-1); MS-ESS3.D (S-ESS3-1)

Common Core State Standards Connections:

- **ELA/Literacy**
 - **RI.5.1** Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (S-ESS3-1)
 - **RI.5.7** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (S-ESS3-1)
 - **RI.5.9** Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (S-ESS3-1)
 - **W.5.8** Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (S-ESS3-1)
 - **W.5.9** Draw evidence from literacy or informational texts to support analysis, reflection, and research. (S-ESS3-1)

- **Mathematics**
 - **MP.2** Reason abstractly and quantitatively. (S-ESS3-1)
 - **MP.4** Model with mathematics. (S-ESS3-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-cutting Concepts, and Core Ideas.* Integrated and reprinted with permission from the National Academy of Sciences.

November 2013 ©2013 Achieve, Inc. All rights reserved.
3-5-ETS1 Engineering Design

Students who demonstrate understanding can:

3-5-ETS1.1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

3-5-ETS1.2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

3-5-ETS1.3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems
- Asking questions and defining problems in 3-5 builds on grades K-2 experiences and progresses to specifying qualitative relationships.
 - Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost. (3-5-ETS1.1)

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in 3-5 builds on K-2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-5-ETS1.3)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.
 - Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. (3-5-ETS1.2)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems
- Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each meets the specified criteria for success or how well each takes the constraints into account. (3-5-ETS1.1)

ETS1.B: Developing Possible Solutions
- Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1.2)
 - At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS1.2)
 - Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-5-ETS1.2)

ETS1.C: Optimizing the Design Solution
- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS1.3)

Crosscutting Concepts

Influence of Engineering, Technology, and Science on Society and the Natural World
- People's needs and wants change over time, as do their demands for new and improved technologies. (3-5-ETS1.1)
 - Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (3-5-ETS1.2)

Articulation of DCIs across grade bands:

- **K-2.ETS1.A** (3-5-ETS1.1), (3-5-ETS1.2), (3-5-ETS1.3), K-2.ETS1.B (3-5-ETS1.2); K-2.ETS1.C (3-5-ETS1.2), (3-5-ETS1.3), MS.ETS1.A (3-5-ETS1.1), MS.ETS1.B (3-5-ETS1.1), (3-5-ETS1.2), (3-5-ETS1.3); MS.ETS1.C (3-5-ETS1.2), (3-5-ETS1.3)

Common Core State Standards Connections:

ELA/Literacy
- **RI.5.1** Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (3-5-ETS1.2)
- **RI.5.7** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (3-5-ETS1.2)

W.5.7 Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (3-5-ETS1.1), (3-5-ETS1.3)
- **W.5.8** Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (3-5-ETS1.1), (3-5-ETS1.3)

W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (3-5-ETS1.1), (3-5-ETS1.3)

Mathematics
- **MP.2** Reason abstractly and quantitatively. (3-5-ETS1.1), (3-5-ETS1.2), (3-5-ETS1.3)
- **MP.4** Model with mathematics. (3-5-ETS1.1), (3-5-ETS1.2), (3-5-ETS1.3)
- **MP.5** Use appropriate tools strategically. (3-5-ETS1.1), (3-5-ETS1.2), (3-5-ETS1.3)
- **3-5.0A** Operations and Algebraic Thinking. (3-5-ETS1.1), (3-5-ETS1.2)